Endophytic Fungi of Orchid Roots in Korea

Bong-Hyung Lee and Ahn-Heum Eom

Department of Biology Education, Korea National University of Education

The Orchidaceae is one of the largest families of plants closest to one-tenth of all known flowering plant species. Many of these orchids are known to interact with the fungi. Generally, fungi associated with orchid are called mycorrhizal fungi. Orchid mycorrhizae are critically important during orchid germination, as orchid seed has virtually no energy reserve and obtains its carbon from the fungal symbiont (typically Ceratobasidium (Rhizoctonia), Sebacina, Tulasnella). Whereas, it is endophytic fungi that microorganisms growing inside plant tissues without causing symptoms of disease. In this study, we have separated the endophytic fungi from a variety of orchids. So, we got a 10 species of fungi were identified using partial sequences of ITS of nuclear DNA. Trichoderma sp., Cephalotheca sulfurea, Contiochaeta mutabilis, Xylaria frustulosa, Nemania sp., Cryptosporiopsis ericae, Penicillium sp., Curvularia inaequalis, Umbelopsis ramanniana, Penicillium daeae.

Keywords: orchid endophytes, orchid mycorrhizal fungi

Intraspecific Functional Variation of Arbuscular Mycorrhizal Fungi Originated from Same Population on Plant Growth

Eun-Hwa Lee1, Kang-Hyeon Ka2, and Ahn-Heum Eom1

1Department of Biology Education, Korea National University of Education, Cheongwon 363-791, Korea,
2Division of Wood Chemistry and Microbiology, Korea Forest Research Institute, Seoul 130-712, Korea

Arbuscular Mycorrhizal Fungi (AMF) is widespread symbiont forming mutualistic relationship with plant root in terrestrial forest in ecosystem. They provide improved absorption of nutrient and water, and enhance the resistance against plant pathogen or polluted soil, therefore AM fungi are important for survival and maintaining of individual or community of plant. For last decade, many studies about the functional variation of AM fungi on host plant growth response were showed that different geographic isolates, even same species, have different effect on host plant. However, little was known about functional variation of AM fungal isolates originated single population, which provide important insight about intraspecific diversity of AMF and their role in forest ecosystem. In this study, four AM fungal isolates of Rhizophagus clarus were cultured in vitro using transformed carrot (Daucus carota) root and they showed the difference between isolates in ontogenic characteristics such as spore density and hyphal length. The plant growth response by mycorrhizas were measured also. After 20 weeks from inoculation of these isolates to host plants, dry weight, Root:Shoot ratio, colonization rates and N, P concentration of host plant showed host plant was affected differently by AM fungal isolates. This results suggest that AM fungi have high diversity in their functionality in intraspecific level, even in same population.

Keywords: Arbuscular mycorrhizal fungi, Intraspecific variation, in vitro culture, Rhizophagus clarus