ABSTRACT

During last several centuries that the history of the mankind had arrived, we went through prosperity and development of numerous technologies and has experienced a digital revolution. We are opening the new market age of digital technology due to continuous technical innovation for 10 years of the 21st century. The topic of recent technical innovation is splendid development of the 3D industry that can be just called innovation, and the trend of worldwide change is being leaded by 3D display. The development & research of 3D stereoscopic glasses being raised as an important element in this dimension can largely contribute to the development of the present and future 3D display. Accordingly, the 3D stereoscopic glasses can be said as a keyword of new technology bringing out evolution and change of several fields of 3D display. Recently, the creation of products utilizing stereoscopic glasses of domestic leading companies is fully worth to pay attention to. The method of wearing 3D stereoscopic glasses is in the stage of commercialization and is currently arousing emotion of human beings in an optimal practicalization form. The present research analyzed basic factors of 3D stereoscopic glasses, and described on the importance, problems and future directions of its value based on wide understanding of 3D stereoscopic glasses in a 3D display environment. The wide research of 3D stereoscopic glasses will become the driving force that upgrades digital technology of our society much more.
1. 서론

1.1. 연구의 배경과 목적

지난 수십년 동안 인류가 이룩한 과학과 기술의 엄청은 21세기를 맞이할 현대사회의 디지털화를 구현하는데 초석을 닦았다. 현대사회는 소위 디지털 혁명이라 불리는 접점과 정보화 사회를 형성하면서 고도화된 인류문명을 발전시켰다. 최근의 코로나19는 이런 분야의 기술의 발전에 힘입어 3D 산업의 신흥 시대를 열어가고 있다. 작년 하반기 기준으로 총발전, 특히 밀레니엄시대가 지난 10년이 흐른 지금의 세계적인 변화추이는 3D 입체영상이 주도하고 있다. 거리권 입체 영상의 시대가 성큼 다가오고 있으며 차세대 시장을 두고 글로벌 경쟁이 정착되고 있다. 이러한 차원에서 중요한 요소로 부각되고 있는 3D 입체영상의 디자인 개발과 실감선은 현재의 미래사회의 3차원 디스플레이의 확대효과에 큰 기여할 수 있다. 최근 삼성, LG 등 국내외 유수기업들의 입체영상을 활용한 제품선출은 기가 주목할만하다. 3D 입체영상의 적용 방식은 상용화 단계에 있으며 설계의 실감성 형태로 인간의 감성을 분리시킴으로 있다. 3D 입체영상은 3D 입체 디스플레이, 3D 입체영상의 여러 분야의 진화와 변화를 가져오는 신기술의 키워드라 할 수 있다.

본 연구의 목적은 3D 입체영상이 추천되는 시대를 찾아 그 가치에 중요성을 지니고 있는 3D 입체영상의 기초요소를 분석하였다. 차세대 글로벌 시장경쟁의 중심이 되는 3D 입체영상 분야 중에서 3D 입체영상의 폭넓은 이해를 바탕으로 그 가치의 중요성과 문제점을 점차보고 앞으로 나아가야 할 방향에 대해서 제시해 보았다.

1.2. 연구의 범위 및 방법

3D 입체 영상의 개발은 3D 디스플레이에 관심을 정하고 있으며 본 연구는 3D 디스플레이 기술에서 오토스테레오스코프(Auto-Stereoscopic)기술의 현장과 스테레오스코프(Stereoscopic)기술에서 반드시 필요한 3D 입체성의 현장 시점을 조망하고 3D 입체영상의 발전 방향 및 기초요소의 분석과 3D 입체 영상 산업과 인공 산업의 분석에 속하는 3D 입체영상 중 가장 큰 관심을 받고 있는 전장 방식의 3D 입체영상과 복잡 모래즈 방식의 3D 입체영상으로 범위를 한정하였다. 본 연구는 문헌 조사와 3D 입체 영상에 있어 3D 입체영상의 사용 범위와 이용 콘텐츠의 개발을 조망하고 기존에 존재하는 3D 입체영상의 문제점을 분석하여 더욱 분석하여 3D 입체영상의 앞으로 나아가야 할 부분을 도출하였다.

2. 3D 입체영상의 개념 고찰

2.1. 3D 입체영상의 정의

2차원의 평면이 아닌 3차원의 깊이감과 공간감은 3D 입체영상 표현하는 가장 큰 특징이다. 입체영상이라 함은 이 3차원의 영상물도 색상, 위치 등으로 양면의 시각을 이용해서 입체적으로 보이게 함으로써 적응으로 감상하는 것이다. 즉, 양면 양쪽의 색상, 위치 등을 다르게 분리하여 스크린 등 여러 영상물을 볼 때 입체감을 느끼도록 하는 것이다.

2.2. 3D 입체영상의 원리

최근 상용화된 과학기술을 활용하기는 전형적 '아바타'인 3D 입체영상을 창작하고 보는, 경험해 보지 못한 새로운 기술방식으로 주목을 받으며 전 세계적으로 토종을 일으키고 있는 작품이다. 입체영상을 보고 보는 스크린 위의 영상은 관찰을 향해 안나올 것 같은, 손을 벗으니 닦을 것 같은 생성된 3D 입체영상방식은 선보이는 시각을 유혹하고 있다. 입체영상의 원리는 바로 인간이 입체감을 느끼는 데서 오는 것이다. 인간은 두 눈을 가지고 있으며, 이 두 눈은 약 65mm간격으로 배치되어 있어 시력을 비롯 볼 때 좌우 다른 자리에 주요적(주요)을 가지고 맨발에 결합되는데 이 편각을 떠나 해석해서 입체에 느끼게 된다. 입체에게 느끼는 요소로는 물체의 위치, 양쪽 눈의 시각(視覺), 양쪽 눈의 폭각자, 양쪽 눈의 운동시각 등이 있 다.

입체영상은 창작하는 방식은 이러한 빛을 이용한 것으로 현재의 기술은 시각(視覺)을 이용한 방식을 사용하고 있다. 전장 방식의 경우 빛의 편각이 결정을 이용한 것으로 좌우 입상과 우상으로 영상에 서로 다른 편광장과 삽입하면 그 편광장의 방향 방향으로만 진동하는 빛이 스크린에서 사각지고 있는 빛의 각각의 방향의 편광장으로 보이게 된다. 즉 좌우 눈으로는 좌우 입상을 얻고, 오른쪽 눈으로는 우상 입상을 얻고므로 보도록하게 되어 이성을 분리하여 인식하는 것이다. 이렇게

1) www.yonhapnews.co.kr(연합뉴스 2009. 12. 30. 일자.)
2) 관측자가 한 점을 볼 때 양쪽 눈과 그 점을 읽는 적어도 만드는 각각을 말한다.
3) 관측자가 어떤 대상(물체)을 동시에 두 점에서 보았을 때 생기는 방향의 차이를 말한다.
4) 두 눈의 구성(주요)이 다르다는 점과 환경변(黃眼に入って 오는 각, 비교적 가까운 점과 원래의 각)에 대한 것이다.
5) 일본판에 '전장 방식'을 사용한다.
6) 빛은 시각적으로 진동하면서 창작한다. 편광장물질 사용을 둘러싼 일반 방향으로만 진동을 하게 되는데 삽입, 도중 현재의 방향방식을 적어도 놓고 편광장물질을 만드는 데 이 이전 환경이 환경이 된다.