Minimum Temperature Mapping in Complex Terrain Considering Cold Air Drainage

Uran Chung1, Hyeong-Ho Seo2, Kyu-Hong Hwang3, B.S. Hwang4, and Jin I. Yun1

1Department of Ecosystems Engineering/Institute of Life Science and Natural Resources, Kyung Hee University
2Fruit Tree Cultivation Division, National Horticultural Research Institute, RDA
3Agricultural Meteorology Lab., National Institute of Agricultural Science and Technology, RDA
4Gapyong Agricultural Technology Center, Gapyong, Gyunggi-Do

(Received June 3, 2002; Accepted July 24, 2002)

ABSTRACT

Site-specific minimum temperature forecasts are critical in a short-term decision making procedure for preventive measures as well as a long-term strategy such as site selection in fruits industry. Nocturnal cold air pools frequently formed in mountainous areas under anticyclonic systems are very dangerous to the flowering buds in spring over Korea, but the spatial resolution to detect them exceeds the current weather forecast scale. To supplement the insufficient spatial resolution of official forecasts, we developed a GIS - assisted frost risk assessment scheme for using in mountainous areas. Daily minimum temperature data were obtained from 6 sites located in a 2.1 by 2.1 km area with complex topography near the southern edge of Sobaek mountains during radiative cooling nights in spring 2001. A digital elevation model with a 10 m spatial resolution was prepared for the entire study area and the cold air inflow was simulated for each grid cell by counting the number of surrounding cells coming into the processing cell. Primitive temperature surfaces were prepared for the corresponding dates by interpolating the Korea Meteorological Administration’s automated observational data with the lapse rate correction. The cell temperature values corresponding to the 6 observation sites were extracted from the primitive temperature surface, and subtracted from the observed values to obtain the estimation error. The errors were regressed to the flow accumulation at the corresponding cells, delineating a statistically significant relationship. When we applied this relationship to the primitive temperature surfaces of frost nights during April 2002, there was a good agreement with the observations, showing a feasibility of site-specific frost warning system development in mountainous areas.

Key words : frost warning, minimum temperature, nocturnal cold air pool, spatial interpolation, cold air drainage

I. 서 언

봄철 늦게되는 과수재배농가에 피해를 끼치는 수가

 Corresponding Author : Jin I. Yun(jiyun@khu.ac.kr)
행에 재배규모가 작은 곳에서는 기후 지역의 정밀 심층 분석을 통한 과일 재배신경 시스템이 매우 유용할 것이다. 일반 조성된 과수 주산단지인 경우 일 최저기온 예보를 활용한 과일 수리정보시스템의 실시간 운영 역시 검토할 가치가 있을 것이다.

서리 피해와 관련이 깊은 단일 재배기간은 식물의 생육계 추정, 식물 발해에 이르기, 증발변량 추정, 농업용시설 관리 등 그 용도가 다양하므로 강수량과 함께 농장 기상관측의 기본요소이다. 기상청 일기예보 기준에서도 다음 날의 최저기온 예보는 농업생산의 재배 예방 차원에서 요건하게 활용되고 있다. 기상청의 관측 및 예보구역인 70여 개 지점을 제외한 실제 영농현장의 최저기온은 다양한 방법에 의해 간편적으로 내재, 추정되는 것으로 보인다. 특히 국기온 결정에 자세히 고급의 영원히 정착된 분산점과 과일내

생산에 사용되는 주변 관측장의 표준편차를 기온계에 의해 보정해 주는 간단한 방법이 많이 쓰이고 있다 (Nalder and Wein, 1998). Dodson and Marks (1997)는 표준데이터의 기온검증은 미국 북서 태평양 연안 산악지역의 일최저기온 내장에 이용함으로써 총 830,000 km²의 일부 기온정보를 1 km x 1 km 공간 해상도로 작성하였다. 우리 나라에서는 표준데이터의 기온검증을 대신 산악지역에서 해양따라 이동할 때 관찰되는 경위 기온변화양상을 최저기온 추정에 활용한 사례가 있는데, Yun et al. (2000)은 먼저 기온역산기관에 의해 관측소 해상도가 큰 기온과기온관측값에 근거한 기온관측과 기온관측값에 근거한 초기기온표면을 각각 만들고, 각격자철의 실제 지역과 기온관측값 고도도체, 관찰된 기온

계의 계절변동을 적용하여 초기기온표면을 보정해 주는 방법을 주장하였다.

그러나 상대적으로 낮은 지역에서 낮은 해상도로 추정할 경우에는 기온검증만 고려하는 이 방법이 어느 정도 실용성이 있지만, 실제로 정밀추정이 필요한 경우

고도도체는 적절하지 못하다. 양의 그 높은 기온관측에서 결정된 계절이나 시각은 계기를 사용하여 기온관측표면을 보정해 주는 방법을 주장하였다. 그러나 상대적으로 낮은 지역에서 낮은 해상도로 추정할 경우에는 기온검증만 고려하는 이 방법이 어느 정도 실용성이 있지만, 실제로 정밀추정이 필요한 경우 고도도체는 적절하지 못하다. 양의 높은 기온관측에서 결정된 계절이나 시각은 계기를 사용하여 기온관측표면을 보정해 주는 방법을 주장하였다.

그런데 상대적으로 낮은 지역에서 낮은 해상도로 추정할 경우에는 기온검증만 고려하는 이 방법이 어느 정도 실용성이 있지만, 실제로 정밀추정이 필요한 경우 고도도체는 적절하지 못하다. 양의 높은 기온관측에서 결정된 계절이나 시각은 계기를 사용하여 기온관측표면을 보정해 주는 방법을 주장하였다.

II. 공간내십시오

기존의 일 최저기온 공간내십시오는 기온역산기관 기법에 고도 기온 관측을 추가한 것이다 (Yun et al., 2000). 다른 조건이 대상자료 내 관측값들과 값과 오직 표준과 다름난 지역 내 일의지점의 추정기온

r는