Abstract

The Effects of Evjenth-Hamberg Stretching on Active Range of Motion of the Hip Joint and the Pennation Angle

Seung-chul Chon, M.Sc., P.T.
Ki-yeon Chang, Ph.D., O.T.
Dept. of Occupational Therapy, College of Health and Welfare, Woosong University

The purpose of this study was to investigate the effects of Evjenth-Hamberg stretching on the active range of motion (ROM) of the hip joint and the pennation angle of the semitendinosus muscle. Eighty healthy adults participated in this study. The active ROM of the hip joint was measured by a goniometer and the pennation angle of the semitendinosus muscle was measured by ultrasonographic imaging (USI). Both ROM and pennation angle were recorded before and after the static stretching and the Evjenth-Hamberg stretching, respectively. Data were analyzed using paired t-test and independent t-test at p<.05. The results were as follows: 1) The active ROM of the hip joint increased significantly after both stretching interventions compared with the baseline (p<.001). However, the active ROM of the hip joint increased significantly in Evjenth-Hamberg stretching compared with static stretching. 2) The pennation angle decreased significantly after both stretching interventions compared with the baseline (p<.001). However, the pennation angle decreased significantly in Evjenth-Hamberg stretching compared with static stretching. 3) Reliability data showed that there was a high consistency in USI measurements (ICC=.978). Our findings suggest that the Evjenth-Hamberg stretching was more effective than static stretching in increasing the active ROM of the hip joint and decreasing the pennation angle of the semitendinosus muscle.

Key Words: Evjenth-Hamberg stretching; Pennation angle; Ultrasonographic imaging.

I. 서론

유연성이란 신체분절이나 관절이 가동범위를 통해 약간-마이오선 복합체가 이완되어 근-건(muscle-tendon) 길이가 늘어나는 능력을 가리키며, 옴바른 스트레칭 방법을 통하여 증진될 수 있다고 한다(Bandy 등, 1997; Kisner와 Colby, 2002). 스트레칭은 단축(shortening), 반혼조직(scar tissue) 형성, 지가동성(hypomobility) 구조(structure)에 의한 관절가동범위의 제한을 해결하기 위하여 치료사의 업무적 판단에 기초하여 강도, 기간, 그리고 반도 등이 다양하게 적용되고 있다(Halbertsma와 Goeken, 1994; Kisner와 Colby, 2002; Rubini 등, 2007). 스트레칭 방법으로는 특정 자세에서 일정시간 동안 의학적 스트레칭(Sharman 등, 2006), 전문적인 환자 교육 후 예방 목적으로 환자 스스로 실시하는 동적 스트레칭(Youdas 등, 2003), 근육의 수축과 이완을 반복 적용하는 고유수용성 신경근 촉진법(proprioceptive neuromuscular facilitation) 스트레칭의 유사-이완

통신저자: 장기언 kiyeon@lion.woosong.ac.kr
(hold-relax) 및 수축-이완(contraction-relax) 그리고 주동근과 급장근에 동적 수축(isometric contraction)과 정적 스트레칭을 경험한 에비안스-할베르크 스트레칭 방법 등이 있다(Evjenth 등, 2005; Evjenth와 Hamberg, 1985).


스트레칭 적용 후 유연성을 증가시키기 위해서는 관절 각도에서가 억제된 측정이 대부분으로써, 근골격 구조(skeletal muscle architecture)의 미세한 역학적 변화가 근육 내부의 형상적 운동을 연구한 자료는 매우 미흡하다. 특히, 염상에서 가장 절제된 근골격

정동후(2001)는 정확한 측정은 해부학적 지식을 바탕으로 각도계의 정밀(alignment) 및 위치(position)에 따라 큰 변동을 가질 수 있으며, 측정 오류가 많이 발생할 수 있어 신뢰성에 대한 문제가 제기될 수 있다고 하였다. 최근에는 이러한 오류를 보완하기 위하여 정량적인 방법으로 단순형, 자기공명영상(magnetic resonance imaging; MRI), 전산화단층촬영(computed tomography; CT) 및 초음파(ultrasonography; US)와 같은 영상의학 장비들이 선택적으로 사용되고 있다. MRI와 CT의 경우 병변의 해부학적 위치나 크기를 정확하게 알 수 있다는 장점이 있으나, 고가의 비용, 인체내 금속장치, 및 폐쇄 공간중 환자에게는 시행하기 어려운 단점을 가지고 있다(Jacobson, 2008).


스트레칭 적용 후 유연성을 증가시키기 위해서는 관절 각도에서가 억제된 측정이 대부분으로써, 근골격 구조(skeletal muscle architecture)의 미세한 역학적 변화가 근육 내부의 형상적 운동을 연구한 자료는 매우 미흡하다. 특히, 염상에서 가장 절제된 근골격