Sepsis and Acute Respiratory Distress Syndrome: Recent Update

Won-Young Kim, M.D. and Sang-Bum Hong, M.D., Ph.D.
Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Severe sepsis or septic shock is characterized by an excessive inflammatory response to infectious pathogens. Acute respiratory distress syndrome (ARDS) is a devastating complication of severe sepsis, from which patients have high mortality. Advances in treatment modalities including lung protective ventilation, prone positioning, use of neuromuscular blockade, and extracorporeal membrane oxygenation, have improved the outcome over recent decades, nevertheless, the mortality rate still remains high. Timely treatment of underlying sepsis and early identification of patients at risk of ARDS can help to decrease its development. In addition, further studies are needed regarding pathogenesis and novel therapies in order to show promising future treatments of sepsis-induced ARDS.

Keywords: Sepsis; Shock, Septic; Acute Respiratory Distress Syndrome; Biomarkers; Treatment; Review

Introduction

Severe sepsis and septic shock are major healthcare problems that affect millions of patients globally each year. An excessive response to infectious pathogens by inflammatory mediators is implicated in pathogenesis, and mortality from septic shock is high. Acute respiratory distress syndrome (ARDS) is a devastating complication of severe sepsis. Sepsis and ARDS have similar underlying mechanisms, characterized by inflammation and endothelial dysfunction. In addition, severe sepsis is the most common etiology of ARDS, and patients with sepsis-induced ARDS have higher case fatality rates than patients with other risk factors of ARDS. The aim of this review is to highlight current data on epidemiology, pathogenesis, and treatment of sepsis-induced ARDS.

Incidence, Mortality, and Risk Factors

The incidence of ARDS in adult patients with sepsis is about 6%–7% in Western countries. According to data of the Korean Study Group on Respiratory Failure, the incidence of sepsis-induced ARDS is 6.8% (306/4,515) in Korea (unpublished data). In patients with sepsis, the progression to ARDS is rapid and is associated with an increased risk of in-hospital mortality. On the other hand, early goal-directed therapy in patients with severe sepsis or septic shock reduced a proportion of the patients received mechanical ventilation. These findings indicate that the incidence of sepsis-induced ARDS is relatively low, but treatment of underlying sepsis and identification of patients at risk of ARDS development is of great importance. To date, few studies have evaluated the risk factors of developing ARDS in severe sepsis population. The Lung Injury Prediction Score, initial serum lactate level, and microbiologically proven infection were factors associated with increased risk of ARDS in patients with severe sepsis.

Pathogenesis

ARDS is a heterogeneous syndrome characterized by increased permeability of pulmonary capillary endothelial cells
and alveolar epithelial cells. The cause of injury may be either direct (e.g., pneumonia and gastric aspiration) or indirect to the lung (e.g., non-pulmonary sepsis and trauma), although distinguishing direct from indirect injury may be difficult in some cases (e.g., pneumonia sepsis). Preclinical models have suggested that direct lung injury begins with an insult to the lung epithelium, but indirect lung injury originates with systemic endothelial damage due to inflammatory mediators. Several studies have demonstrated differences of these two phenotypes in humans using a panel of plasma biomarkers. For instance, the levels of surfactant protein, which is a matrix of amphipathic lipoproteins and phospholipids used to prevent alveolar collapse, were significantly higher in direct ARDS patients. On the other hand, the levels of angiopoietin and Von Willebrand factor, which are both dysregulated in endothelial injury, were significantly increased in indirect ARDS by trauma and non-pulmonary sepsis. A biomarker panel which includes biomarkers of lung epithelial and vascular endothelial injury may be useful in understanding the pathogenesis of sepsis-induced ARDS, and for selecting patients in trials of new therapies targeted to the lung epithelium and vascular endothelium.

Treatment

At present, there is no specific treatment for sepsis-induced ARDS. The overall treatment strategies of ARDS are not different for patients with sepsis-induced ARDS, and adequate delivery of oxygen to tissue is a primary goal.

1. High-flow nasal cannula and noninvasive ventilation

High-flow nasal cannula (HFNC) is a novel oxygen device that can deliver up to 100% heated and humidified oxygen via a wide-bore nasal cannula at a maximum flow rate of 60 L/min. In a recent multicenter trial, the use of HFNC in acute hypoxic respiratory failure significantly decreased the intensive care unit (ICU) and 90-day mortality in overall, and the intubation rate in patients with PaO2/FiO2 (PF) ratio ≤200 mm Hg. However, this study did not include patients with hemodynamic instability. In addition, HFNC failure with late intubation (>48 hours after HFNC initiation) was associated with higher overall ICU mortality and poorer extubation success in acute respiratory failure. Noninvasive ventilation (NIV) may be effective for patients with chronic obstructive pulmonary disease and cardiogenic pulmonary edema. However, it is less likely to be helpful in patients with hypoxic respiratory failure. Similar to HFNC, late NIV failure (>48 hours after NIV initiation followed by invasive mechanical ventilation) was associated with high mortality and poor prognosis. Therefore, the use of HFNC or NIV should be carefully considered in sepsis-induced ARDS patients in whom the benefits are thought to outweigh the risks.

2. Invasive mechanical ventilation

The lung protective ventilation strategy (tidal volume of 6 mL/kg of predicted body weight and plateau pressure less than 30 cm H2O) is strongly advocated. Retrospective studies suggested that tidal volumes should be lowered even at plateau pressures <30 cm H2O, as lower plateau pressures associated with lower mortality rates. On the other hand, a recent study suggests that the lung protective ventilation is beneficial only if associated with decreases in driving pressure (plateau pressure minus positive end-expiratory pressure [PEEP]), indicating the importance of lung recruitability in patients with ARDS. To enhance gas exchange and to avoid atelectotrauma, PEEP can be applied. Large multicenter trials using higher levels of PEEP in conjunction with low tidal volumes did not show survival benefit, although a hyperinflammatory phenotype of ARDS with a higher prevalence of sepsis had lower mortality and less organ failure using high PEEP strategy.

Permissive hypercapnia, in conjunction with limiting tidal volume and minute ventilation, is an important component of lung protective ventilation strategy. In contrast, hypercapnia may increase the severity of lung injury by prolonging pneumonia. The possible underlying mechanism seems to involve prolonged immune suppression and subsequent increase of bacterial load. Nevertheless, current opinion recommends the use of permissive hypercapnia in treatment of sepsis-induced ARDS.

3. Prone positioning

In sepsis-induced ARDS with severe refractory hypoxemia, rescue therapies can be considered. Prone positioning could be an effective modality. Prolonged prone positioning (>16 hours) in patients with PF ratio ≤100–150 mm Hg showed positive results in patients with ARDS, although the role of oxygenation improvement in reducing mortality became less clear. Prevention of ventilator-induced lung injury and improvement of hemodynamics may be alternative mechanisms explaining clinical benefits of prone positioning in ARDS, and further studies are required.

4. Neuromuscular blockade

A multicenter trial showed that early continuous infusion of neuromuscular blocking agent (NMBA) for 48 hours in patients with severe ARDS (PF ratio <150 mm Hg) was associated with improved outcomes without increased muscle weakness. Although the disease severity was lower than previous studies, an analysis found that early treatment with NMBA showed lower in-hospital mortality among patients with severe sepsis and respiratory infection in mechanical