Relief of Postherpetic Neuralgia with Transforaminal Epidural Injection of Magnesium

-A Case Report-

Department of Anesthesiology and Pain Medicine, Bucheon Hospital, College of Medicine, Soonchunhyang University, Bucheon, Korea

Ho Kyoung Yu, MD, Joon Ho Lee, MD, Sung Hwan Cho, MD, and Yong Ik Kim, MD

Although postherpetic neuralgia (PHN) is a common chronic pain syndrome, the pathophysiology of this disorder is not well known and management is often very difficult. N-methyl-D-Aspartate (NMDA) receptor antagonists are known to be effective in PHN, and magnesium, a physiological blocker of NMDA receptors, is widely used to treat various chronic pain disorders. Here, we present a case of the PHN refractory to conventional treatment, which was treated successfully with transforaminal epidural injection of magnesium sulphate at the affected dermatome. (Korean J Pain 2011; 24: 53-56)

Key Words:
epidural injections, magnesium sulphate, N-Methyl-D-Aspartate receptor, postherpetic neuralgia.

Postherpetic neuralgia (PHN) is a chronic neuropathic pain syndrome that occurs after reactivation of varicella zoster virus infection with damage to sensory ganglia in nerve roots [1]. Numerous treatment strategies for PHN, including topical lidocaine patches, antidepressants, anticonvulsants, corticosteroids, opioids and nerve blocks, have shown some degree of efficacy [2], but the effects are often limited and many patients are refractory to these treatments. Previous report has suggested that N-methyl-D-Aspartate (NMDA) receptor antagonists, such as ketamine, can decrease pain associated with PHN. However, adverse effects such as psychomimetic effects limit its therapeutic use, even at low doses [3].

Magnesium, which is also a NMDA receptor antagonist, has been used in the treatment of neuropathic pain usually via the intravenous route and is free of psychomimetic side effects. However, the anti-nociceptive effect of intravenous magnesium remains controversial [4], and increases in serum magnesium concentrations during and after administration may cause serious, sometimes fatal complications such as respiratory paralysis, hypothermia and coma. The epidural route of administration, especially the transforaminal epidural route, has advantages in target-specific delivery of drugs and reduction in the dose of...
medications used. Therefore, epidural administration is superior to systemic injection if the efficacy can be guaranteed.

Here, we present a patient with PHN refractory to conventional therapy treated successfully by transforaminal epidural magnesium injection (TFEMI).

CASE REPORT

A 60-year-old woman (height, 162 cm; weight, 61 kg) visited pain clinic with tactile allodynia and electric shock-like pain in the left dorsal scapular area around the T3 dermatome, which had been diagnosed as PHN about 1 month previously and attack of the herpes zoster was 1 year ago. The 100-mm visual analogue scale (VAS) of allodynia and electric shock-like pain was rated between 70 and 80 mm on a scale from 0 (no pain) to 100 (worst pain imaginable). The interlaminar epidural block was performed at the T3–4 space by the paramedian approach with 5 ml of 0.2% ropivacaine and 20 mg of triamcinolone acetate. Pregabalin and morphine at doses of 150 mg and 10 mg, respectively, twice a day, amitriptyline at a dose of 10 mg before sleep and topical lidocaine patches were prescribed. Dosages of all drugs were adjusted depending on the side effects during the follow-up period. Epidural blocks were repeated twice with a 1-week interval and the continuous intravenous infusion of ketamine (60 mg) was performed over a period of 1 hour twice a week under careful monitoring. The dose of ketamine was increased gradually up to 120 mg. After 1 month elapsed, electric shock-like pain was reduced to a VAS score of 30/100, but allodynia was not diminished (VAS score of 70/100).

After 4 months elapsed, we decided to administer magnesium sulfate via the intravenous route. And it was done with continuous intravenous infusion of 1,000 mg of magnesium sulfate in 50 ml of normal saline for 1 hour. Before and after infusion, the serum magnesium levels were checked. After magnesium therapy, she felt very good about her pain and the VAS of allodynia was reduced to 40–50. At 1-week follow-up, she was very satisfied with the treatment and reported the reduction of allodynia on the dorsal scapular area of up to 50% (VAS 25–30/100). However, the serum magnesium level had increased above normal range (2.3 mEq/L to 2.9 mEq/L) after infusion. Although it was below the serum level reveals of the adverse effect, we decided to stop intravenous infusion of magnesium sulfate. For more accurate and safe delivery of magnesium to the target site, we applied magnesium using the transforaminal epidural injection technique.

With the patient’s informed consent, left T3 TFEMI was performed under fluoroscopy guidance. The patient was placed in the prone position and draped in the sterile manner. A 22-gauge, 3.5-inch spinal needle was advanced into the left T3 nerve root foramen under fluoroscopic guidance. The final needle placement was confirmed on posterior–anterior and lateral fluoroscopic images. Identification of the T3 nerve root sheath and epidural space was performed using contrast media (Fig. 1). Then, 100 mg of magnesium sulphate and 1 ml of 0.2% ropivacaine (total volume, 2 ml) was carefully injected. TFEMI was repeated twice with a 1-week interval (total of three times) and the degree of pain decreased gradually during the follow-up period.

One week after the last procedure, the VAS score of allodynia decreased to 15/100 and all medications except pregabalin were discontinued. The VAS was 10/100 throughout 1-month follow-up, and pregabalin had also been tapered. The patient remained free of symptoms at 6-month follow-up.

DISCUSSION

To our knowledge, no previous report has described