컴퓨터의 전과정평가
조희주·최익원·신광철·박범수·정연하
삼성전자

Life Cycle Assessment on Personal Computers
Heejo Cho · Yonha Chung · Ikwon Choi · Kwangchul Shin · Bumsu Park
Samsung Electronics co. Ltd.

1. 서론

삼성전자는 96년 전자공학의 전과정평가(LCA)를 시작으로 97년에는 냉장고, 세탁기, 에어컨, 모니터, 컴퓨터와 TV 등 5개 제품에 대해 LCA를 실시하였으며, 98년에는 반도체 및 컴퓨터에 대한 LCA를 완료하였다.

개인용 컴퓨터의 보급율은 매년 10%정도씩 증가하는 추세이며, 3~4년 후에는 컴퓨터의 폐기문제가 대두될 것으로 예측되고 있다. 또한, 기존의 컴퓨터는 98년 초 환경마크대상 후보 제품군에 선정되어, 향후 컴퓨터를 위한 환경마크인 친환경 제품의 개발을 위한 기 초 데이터를 축적하기 위해 Desktop PC와 Note PC에 대하여 LCA를 수행하였다.

2. LCA 수행 절차

2.1 목적 및 범위 정의

LCA의 수행 목적을 정의하고 LCA결과를 어떠한 커뮤니터에 활용할 것인지 결정하며 LCA를 수행하려는 대상 제품과 기간단위를 선정하고, 지리적경계, 시간적경계 등 시스템경계를 설정한다. 또한, 제품의 사용 및 폐기 실태 조사를 토대로 제품의 사용 및 폐기 시나리오와 가정을 설정한다.

2.2 전과정목록분석 (이하 목록분석이라 함)

대상 제품의 부품/공정별 입/출력 데이터를 수집하여, 전과정에 걸쳐 유발되는 환경부하 골절의 양을 분석한다. 이를 위해 데이터 체계를 사용하여 수집한 현장 데이터를 데이터 검토 양식에 입력하여 데이터의 신뢰성과 완전성을 검토한 후, 목록분석용 S/W를 사용하여 공정도를 작성한다.

2.3 전과정평가 (이하 영향평가라 함)

목록분석결과를 관련있는 환경영향범주에 연결시키고(분류화) 환경영향범주별 환경영향도를 도출한다(특성화). 특성화결과들은 정규화와 가중치 부여단계를 거쳐 하나의 값(Single Value)으로 통합할 수 있다.

본 연구에서 선정한 환경영향범주는 다음의 8가지이다.
·무생물자원고갈(Abiotic Resource Depletion)
·오존층파괴(Ozone Layer Depletion)
2.4 결과해석
영향평가 결과를 토대로 환경에 큰 영향을 미치는 공정 및 부품(Key Issues)을 찾아내고 이의 원인을 규명한다. LCA 결과의 신뢰도를 높이기 위해 완전성 검토, 민감도 분석 등을 수행하기도 한다. 이 단계에서 규명된 Key Issue 분석 결과는 제품 개발자에게 전달되어 제품의 환경성 개선에 활용하도록 한다.

3. 컴퓨터의 LCA

3.1 목적 및 범위 설정
(1) 목적: 컴퓨터의 기초 데이터베이스를 구축하고, 제품 전과정에서의 주요환경영향인자를 파악하여 제품의 환경성 향상을 도모한다.
(2) 대상제품: Pentium II 프로세서를 장착한 586 컴퓨터 + 17인치 모니터
(3) Data 수집 범위
*데이터의 종류: 현장데이터의 수집을 원칙으로 하였으며, 현장데이터의 수집이 어려운 경우에는 문헌 데이터와 동종 업체의 데이터를 이용하였다.
*데이터 산출기간: 제품 설계 생산 기간을 기준으로 설정하였다.
 PC: 98.1.1 ~ 3.31
 Monitor: 97.2.1 ~ 5.31 (기존 LCA 데이터 사용) [4]
(4) 할당방법
 재활용시 질 저하가 없는 물질(철, 알루미늄, 구리 등 금속류)은 5050 할당방법을 이용하였으며 재활용시 질 저하가 있는 물질(플라스틱, 종이류 등)은 Quality 저하에 대한 데이터가 있는 경우에 한하여 Quality 할당방법을 이용하였다.[5]
(5) 사용 및 폐기 시나리오
 *사용 시나리오: 국내 및 외국의 소비자 사용실태 조사를 통하여 설정하였다.
 *폐기 시나리오: 문헌조사 및 재활용업체를 방문하여 조사하였다.
 기본적으로 제품폐기 시 단일재질로 구성된 부품은 분리되어 재활용되며 복합재질로 구성된 부품은 소각되는 것으로 가정하였다. 단, Mother Board의 경우 유가금속류는 재활용하고 나머지는 소각되는 것으로 가정하였다.

3.2 목록분석
목록분석결과를 제조(Production), 사용(Use), 폐기(After Use)단계로 나누어 <표1>에 나타내었다.
사용단계를 보면, CO2 등의 대기오염물의 발생량도 큰데, 이는 제품 사용할 때 전력 소비에 따른 것이다. 제조단계에서는 제품생산에 사용되는 원자재에 의한 자원사용량이 많은 부분을 차지한다. 폐기 단계에서 '−'값을 가지는 이유는 재활용에 의한 환경적 이익을 고려하였기 때문이다.