A Study on the Formation of Hydrate Plugging due to water molecules in High Pressure and Low Temperature Gas Pipeline

J. H. Lee, Y. S. Baek, W. M. Sung*
LNG Technology Research Center, R & D Division, Korea Gas Corporation
*Dept. of Geosystem & Environmental Engineering, Hanyang University
(Received 4 February 2002 : Accepted 4 March 2002)

Abstract - Hydrates are solid crystallines resembling ice in appearance, which are consist of a gas molecule surrounded by a cage of water molecules. Because of containing a large amount of methane, hydrates have been considered as a future energy resource. However, the formation of hydrates in the oil and gas industries has been known as a serious problem for a long time. The formation of hydrate in pipeline is common in seasonally cold or sub-sea environments with low temperatures and high pressures. Especially, hydrate plug formation becomes a real menace to flow assurance in inadequately protected transmission lines. This study was carried out for the purpose of understanding mechanism of hydrate plugging and examining formation conditions of

주저자 : jhwan@kogas.re.kr
hydrate in high pressure gas pipeline. In this study, we measured hydrate equilibrium conditions under the various flowing conditions with the methane. The results were presented both the plugging tendency and the effect of flowing velocity.

Key words: hydrate, pipeline, flowing condition, equilibrium condition, plugging

1. 서 론

천연가스는 석유의 대체 에너지원일 뿐만 아니라 청정에너지로서 그 중요성이 더욱 강조되고 있으며 가스산업의 발견과 가스이용의 확장적인 증가로 천연가스의 소비량은 날로 증가함으로 예상되고 있다. 이러한 상황에서 최근 국내에서의 날로 증가하고 있는 천연가스의 수요에 부응하기 위해 LNG (Liquified Natural Gas) 수입량 증가뿐 아니라 러시아 이르크츠크 지역에서의 천연 가스전 개발 및 장거리 PNG (Pipilined Natural Gas) 수송, 국내배관용 개발 등을 통한 가스전 생산을 추진하고 있다. 그러나 영구동토지역 및 심해에서의 석유 및 천연가스의 개발이나 장거리 수송과정에서, 가스 하이드레이트가 형성될 수 있고 이는 가스 폭발, 푸리징, 시설물의 손상 등 생산설비 및 수송배관을 위협하는 중요한 요소로 작용되며 이에 대한 많은 사고사례가 보고되고 있다[1]. 가스 하이드레이트는 특정 온도와 압력조건하 에 물분자와 결합하여 대형크리스탈로 형성되는 것으로 알려져 있다. 하이드레이트는 저온 상태의 고압 환경에서 생성되며, 억제어가 유사한 조건이 일어나면 물과 가스가 공존하는 조건의 이상에서도 생성될 수 있는 특징이 있다[2].

가스 하이드레이트는 심해 및 극지방 다수 파이프라인 유동에서 유발될 수 있는 대표적인 문제점으로, 영구동토 지역의 시베리아는 물론 북극 및 빅시코안 등의 여리 유주이나 가스전에서 심각한 문제를 발생시키고 있다[3]. 일반적으로 천연가스 성분 중에는 메탄, 에탄, 프로판, 부탄, 이산화탄소, 질소, 화학수소와 같은 종류의 포함가스가 함유되어 있기 때문에, 해수 가스 파이프라인이 동토지역을 통과하는 파이프라인에서는 주로 압력과 온도에 따라 하이드레이트가 생성될 수 있으며, 특히 송출 압력을 높게 할 경우에는 파이프라인 안에 하이드레이트가 생성될 가능성이 더욱 높아져, 푸리징 형성에 의한 유동저해 및 배관손상이 예상된다 (Fig. 1.). 생산 파이프라인에서 하이드레이트 플러징 현상이 생기는 주된 이유는 설비 건설후에 운영준비단계에서 기술적으로 충분치 못한 처리와 생산 관리수요의 저급성에서 그 원인을 찾을 수 있으며 수송 파이프라인의 경우 가스안에 불 또는 수증기의 존재를 들 수 있다. 파이프라인 건설 후 실시하는 수압시험 후 내부에 남은 경우와 부적절한 보온시험으로 인한 용융현상이 그 원인으로 보고되고 있다[4].

![Fig. 1. Hydrate problems in pipelines.](image)

따라서, 하이드레이트 발생이 가능한 환경에서 파이프라인 설계와 유지에 요구되는 비용을 최소화하면서 파이프라인에 의한 안전한 가스 공급을 위해서는, 하이드레이트의 특성 및 상황 데이터를 확보하는 것뿐만 아니라 하이드레이트 방지책의 선정 기준을 제시해야 하며, 이를 위해 유용효과를 고려한 하이드레이트 형성조건의 도출 및 판단은 필수적이다 하겠다. 그러나 지금까지의 하이드레이트에 관한 연구는 하이드레이트의 영역학적인 평형조건과 특성, 구조에 관한 연구[5, 6]가 주로 수행되었고, 실험 연구분야에서도 주로 양운용을 이용한 링어리 (bulk) 상태의 하이드레이트에 대한 연구[7]가 수행되어 실제 파이프라인에서의 유