SCM 구축을 위한 협업적 수요예측 모형 개발
통신험장비 제조산업의 협업 수요예측 실험 사례 모형 연구

권재현¹ · 박상민² · 남호기²
¹Adexa 한국지사 / ²인천대학교 산업공학과

A Study on Collaborative Demand Planning for Effective Supply Chain Management
Jae-Hyun Kwon¹ · Sang-Min Park² · Ho-Ki Nam²
¹Adexa Korea Inc., Seoul, 150-717
²Department of Industrial Engineering, University of Incheon, Incheon, 402-749

We have discussed the importance of collaborative forecasting and the difficulties that can arise during its implementation. We have also proposed the detail process of collaborative forecasting and the system requirement on each step of the process so that the proposed detail process can be easily applied to real life scenario. Lastly, we have talked about a case study of a telecommunication equipment manufacturer that has implemented the proposed collaborative forecasting process that verify the feasibility of the process.

Keyword: 공급망 계획, 협업적 수요예측, SCM, collaboration, consensus forecast

1. 서 론

오늘날의 글로벌한 시장환경에서 체험이 경쟁, 빠르게 제품주기, 고객의 기대수준 향상과 같은 기업환경 변화에 대응하기 위해 기업은 공급망 부문의시점 공급체인 상에 위치한 기업들을 간의 협력과 조정을 통한 전체의 최적화를 추구하는 공급망 관리에 관심을 집중하고 있다(David Simchi-Levi et al., 2000)

협업적 공급망 관리의 발전은 수요예측을 그 기능적 역할이 가장 중요하다고 할 수 있다. 최종 고객으로부터의 수요는 공급망 내의 모든 구성원들의 활동을 만들어 내는 시각적 과정이 되며, 공급망에 연결된 모든 구성원의 참여는 예측과 실제 수요에 대한 대응이라고 할 수 있기 때문이다(Marilyn M. Helms et al., 2000). 따라서, 공급망의 최상위 단위의 최우위 단위 사이에서 발생하는 수요의 정확도 향상과 빠른 공유는 재고의 최적화와 고객만족에 직접적으로 영향을 주는 기업의 공급망 구축의 핵심 성공 요소라 할 수 있다.

본 연구에서는 수요예측관리에 대한 전체 공급망의 효과적인 관리를 위한 방법으로 공급전반의 생산 위주의 수동적인 대응(강우식, 2000)보다는 효과적인 수요예측 기법 적용 및 관리를 통한 수요예측 정보 차원의 정확도 향상과 수요예측 반응에 대한 기업간의 공급망 구조간의 공유를 실현할 수 있는 협업적 수요예측 모델을 제시하고, 그 자세한 프로세스와 시스템적 지원사항을 정의한다. 제시된 모델을 기반으로 정보통신 경비산업의 구축 사례를 통해 그 실현 가능성에 제시할 것이다. 협업 수요예측은 기업 간의 정보를 교환하여, 전 공급망의 고객의 요구에 대해 공동으로 대응하는 기업간 협업예측(interfirm collaborative forecasting)과, 기업내부의 수요예측 관련자들의 협업을 통한 협업된 수요예측을 생성하는 기업 내부의 협업예측(intrarnal collaborative forecasting)으로 구분될 수 있으며(Teresa M. McCarthy et al., 2002), 본 연구에서는 기업내부 협업예측 프로세스를 그 범위로 정의한다.

본 연구는 한국과학단지 내정 인천대학교 통합과학기술연구센터의 지원에 의한 것임.
*연락처 : 박상민 교수, 402-749 인천광역시 남구 도화동 177 인천대학교 산업공학과, Fax : 032-770-8485, E-mail : smpark@incheon.ac.kr 2003년 2월 접수, 2회 수정 후 2004년 2월 재제 확정.
1.1 협업적 수요예측의 필요성

공급망 체제의 효과적인 구조를 위해서 전제 공급망을 리드하는 수요예측의 효율성이 강력히 요구되고 있다. 다음은 공급망 관리에서의 수요예측 활용의 필요성에 대해 서술하였다.

첫째로, 수요예측은 전제 공급망 구성원들의 활동의 시발점이 되어 전체 공급망의 활동을 리드한다. 공급망을 구성하는 각 부문들의 모든 행위는 최상위 단위의 예측수요 혹은 실제오타에 대한 전제의 직각화를 고려한 반응영역에도 불구하고 기존의 업무단계에서는 수요예측 자체에 대한 중요성은 인식하거나 그 수행이 부자연스럽다고 한다(Marilyn M. Helms, 2000; Paul Schonsleben, 2000).

둘째로, 수요예측은 공급망 구성원들의 생산 및 구매의 가시성을 제고하고 불확실성을 감소시켜, 최적화를 부문의 효율화를 이루어 주며, 고객 만족을 위한 실시간 납기 확보 및 효과적인 재고 관리를 위한 가시성을 제공한다.

셋째로, 수요예측 정보를 통해 중·단기 수요예측에 대한 공급의 가시성을 전자에 제공하고, 공급망 구성원들이 미래 수요 및 공급에 대한 추이에 대응할 수 있는 정보를 제공한다.

넷째로, 최근의 IT 기술의 향상은 공급망 솔루션의 최적화 부문의 계획기술을 빠르게 단차시키고 있다. 최근의 구축 경향을 보면 Weekly, Daily, 혹은 Shift 단위의 최적화 계획을 실시하고 있다. 이러한 최적화 부문의 따른 계획투자에 의해 전체 공급망은 기업화형 계약조건에 따른 변동을 반영하여 현실과 귀리감 없는 계획을 생성할 수 있게 되었다. 이러한 기업화 공급 관리체제를 구축하기 위해서는 협업예측 부문은 급변하는 고객요구를 반영할 수 있도록 매일 혹은 주간 예측과 같은 단Cycle을 지원할 수 있어야 하며, 고객의 수요의 급변을 통해 공급망 구성원에게 빠르게 환기시켜 공급의 불합리성을 빠르게 수용할 수 있도록 지원하여야 하며, 수요예측 정보의 정확도 향상을 위해 고객접점에서의 예측성능 및 보다 광범위한 수요예측 관리자의 협업에 의한 전자 협의된 (consensus based) 예측지를 생성할 수 있는 구조를 지원하여야 한다.

2. 본론

2.1 효과적인 SCM 구조를 위한 협업적 수요예측 모형

협업 수요예측 구조는 크게 협업 수요예측 생성 프로세스와 수요예측 변동관리 프로세스로 구분될 수 있다. 

협업 수요예측 생성 프로세스는 단기로 전자가 협의하여 협업 수요예측을 생성하기 위하여 고객접점에서 생성된 초기 수요예측치를 전자가 협의하는 협업예측을 생성하는 과정에 협의된 협업예측을 기반으로 한 생산 관리계획 생성 및 예측 대할 정보분석까지의 일련의 전기적 단계별 프로세스를 말한다.

협업 수요예측 변동관리 프로세스는, 특정 주기에 구애받지 않고, 수요예측의 변동에 포함되었을 때 가장 효과적이며 신속하게 전체 공급망에 변동을 알리 전체 공급망계 변동에 대해 공동으로 대응할 수 있도록 관리된 수요예측 구성원에게 변동을 환기시키는 프로세스를 말한다.

그림 1에는 제시한 협업 수요예측의 단계별 활동을 도식화한 그림이다.

그림 2는 제시한 협업 수요예측의 단계별 활동에 대한 표준 협업 수요예측 프로세스이다. 수요예측 단계를 4단계로 구분하여 설명하고 있으며, 첫 번째 단계는 파거 상식의 분석 및 통계기법을 적용한 통계적 예측치 생성 및 분석을 수행하는 참조정보 분석 단계이며, 두 번째 단계는 최하위 예측생성

<table>
<thead>
<tr>
<th>참조 정보 생성 및 분석</th>
<th>수요예측 정보 생성</th>
<th>협업 메커니즘 생성 및 확장</th>
<th>협업정보 생성</th>
<th>예측할 정보 분석</th>
<th>수요예측정보 관리</th>
</tr>
</thead>
<tbody>
<tr>
<td>과거적 다타 자료 합성</td>
<td>고객과의 협업 기반으로</td>
<td>고객예측치 생성</td>
<td>협업대차량 과정</td>
<td>Forecast Netting</td>
<td>협업예측과</td>
</tr>
<tr>
<td>통합된 Algorithm을 위한</td>
<td>연비차량 일/주</td>
<td>생산제작</td>
<td>생산설비</td>
<td>Production Planning</td>
<td>생산정보</td>
</tr>
<tr>
<td>제품별 통계적 정보 생성</td>
<td>생산차량 자체</td>
<td>생산정보</td>
<td>생산정보</td>
<td>생산정보</td>
<td>생산정보</td>
</tr>
<tr>
<td>통계적 정보 자료분석</td>
<td>생산차량 간 일/주</td>
<td>생산차량</td>
<td>생산차량</td>
<td>생산차량</td>
<td>생산차량</td>
</tr>
</tbody>
</table>

100% Web-Based 시스템
수요예측 변동에 대한 실시간 관리 및 Note-Messaging을 통한 협업 지원
Rule Based Event Monitoring를 통한 Event Driven 관리 체제 지원
사용자별 정책규칙에 따라 설정된 변동 발생 시 특정 메시지를 발생시키며, 협업 프로세스를 구동하여야 함
개인별 정보 접근 권한 및 화면 관리
수요예측 프로세스 동화를 위한 Work Flow 기능

그림 1. 협업 수요예측 프로세스의 단계별 활동.