Evaluation of the Hepatoprotective effect of *Ephedra foliate*, *Alhagi maurorum*, *Capsella bursa-pastoris* and *Hibiscus sabdariffa* Against Experimentally Induced Liver Injury in Rats

Saleh I. Alqasoumi, Adnan J. Al-Rehaily, Abdulmalik M. AlSheikh1, and Maged S. Abdel-Kader*

Department of Pharmacognosy, College of Pharmacy

1Department of Pathology, College of Medicine, King Saud University, P.O. Box 2457 Riyadh 11451, Kingdom of Saudi Arabia.

Abstract – In a project to study the hepatoprotective effect of some plant extracts four plants *Ephedra foliate* Boiss, *Alhagi maurorum* Medikus, *Capsella bursa-pastoris* (L.) Medik. and *Hibiscus sabdariffa* L. were studied. The ethanol extract of the aerial part of the first three plants and the flowers of *H. sabdariffa* were subjected to hepatoprotective assays using Wistar albino rats. Liver injury induced in rats using carbon tetrachloride. The biochemical parameters; serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and total bilirubin were estimated as reflection of the liver condition. Based on the good results of the biochemical parameters measurements, histopathological study was performed on the liver of rats treated with *E. foliate*. The normal appearance of hepatocytes indicated a good protection of the extract from carbon tetrachloride hepatotoxicity. All the results were compared with silymarin, the reference hepatoprotective drug.

Keywords – *Ephedra foliate*, *Alhagi maurorum*, *Capsella bursa-pastoris*, *Hibiscus sabdariffa*, carbon tetrachloride, hepatoprotection, silymarin, rats

Introduction

The liver is an organ of prime importance and plays a significant role not only in metabolism and detoxification of exogenous toxins and therapeutic agents, but also in the bioregulation of fats, carbohydrates, amino acids and proteins. A number of pharmacological and chemical agents act as hepatotoxins and produce a variety of liver ailments (Ram, 2001). Numerous herbal extracts are used for liver problems, however, considerable number of them lack the scientific prove for these claims. Silymarin (Morazzoni and Bombardelli, 1995; Mourelle, et al., 1988; Chander, 1989), schisandrin B (Zhu, et al., 1999; Maeda, et al., 1981; Cyong, et al., 2000), phyllanthin, hypophyllanthin (Ramachandra Row, et al., 1966), picroside I and kutkoside (Ram, 2001; Ansari, et al., 1988) are examples of natural anthepatotoxic drugs derived from traditional herbs. We are interested in screening of some plant extracts for possible hepatoprotective effects. In the present study four plant extracts; *E. foliate*, *A. maurorum*, *C. bursa-pastoris* and *H. sabdariffa* were tested against experimentally induced liver injury in rats. *A. maurorum* known locally as “Aqul” or “Camel’s Thorn” is used in Saudi folk medicine for the treatment of liver problems, migraine, and cataract, as tonic, digestive, anti-pyretic, laxative, diuretic, aphrodisiac and anti-inflammatory (Al-Yahya, et al., 1990; Ghazanfar, 1994; Mossa, et al., 1987). The plant is reported to contain alkaloids, flavonoids, tannins, sterols and ascorbic acid (Al-Yahya, et al., 1990; Abbas, et al., 1992; Ghazanfar, 1994). *C. bursa-pastoris*, known locally as “Shepherd’s Purse”, is used locally as remedy for liver, hemorrhages, respiratory problem and diuretic (Al-Yahya, et al., 1990; Mossa, et al., 1987; El-Shanawany, 1994). Phytochemical study revealed the presence of alkaloids, flavonoids saponins and ascorbic acid (Al-Yahya, et al., 1990; El-Shanawany, 1994). The choice of *H. sabdariffa* was based on the fact that it is rich in phenolic compounds and has antioxidant effect (Ross, 2003). Our phytochemical screening revealed that *E. foliate* is rich in phenolic compounds.

Experimental

Plant materials – The aerial parts of *Ephedra foliate*
Boiss (Ephedraceae), Allagi maurorum Medikus (Fabaceae), Capsella bursa-pastoris (L.) Medik. (Brassicaceae) and Hibiscus sabdariffa L. (Malvaceae) were collected from different parts of Saudi Arabia. All the plant materials were identified by Dr. Mohammad Atiqur Rahman, taxonomist of the Medicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. Voucher specimens (# 11046, 10978, 12552 and 7881 for the four plants respectively) were deposited at the herbarium of this center.

Preparation of the extracts—From each plant material 50 g were extracted to exhaustion by percolation at room temperature with 90% ethanol, and the extracts were evaporated in vacuo to leave 5.75, 7.69, 6.68 and 8.3 g of E. foliate Boiss, A. maurorum Medikus, C. bursa-pastoris (L.) Medik. and H. sabdariffa L., respectively.

Test animals—Wistar albino rats (150 -200 g) of either sex roughly the same age (8 - 10 weeks), obtained from the Experimental Animal Care Center, College of Pharmacy, King Saud University, Riyadh were used. The animals were housed under constant temperature (22 ± 2 °C), humidity (55%) and light/dark conditions (12/12 h). They were provided with Purina chow and free access to drinking water ad libitum (Ahmed, et al., 2003). The experiments and procedures used in this study were approved by the Ethical Committee of the College of Pharmacy, King Saud University.

Chemicals—Silymarin (Sigma Chemical Company, USA).

Hepatoprotective activity—Male Wistar rats were divided into five groups' six animals each. Group I was kept as a control group. Groups II, III, IV and V received 0.125 mL of CCl₄ in liquid paraffin (1 : 1) per 100 g body weight intraperitoneally. Group II received only CCl₄ treatment. Group III was administered silymarin at a dose of 10 mg/kg p.o. Groups IV and V were treated with 250 and 500 mg/kg of extracts or fractions respectively. Drug treatment was started 5 days prior to CCl₄ administration and continued till the end of the experiment. After 48 h, following CCl₄ administration the animals were sacrificed using ether anesthesia. Blood samples were collected by heart puncture and the serum was separated for evaluating the biochemical parameters. The liver was immediately removed and a small piece was fixed in 10% formalin for histopathological assessment.

Determination of the enzyme levels—The biochemical parameters such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and total bilirubin were estimated by reported methods (Edwards and Bouchier, 1991). The enzyme activities were measured using diagnostic strips (Reflotron®, ROCHE) and were read on a Reflotron® Plus instrument (ROCHE).

Statistical analyses—For each set of experiments where two or more than two groups were compared, an analysis of variance (ANOVA) test was used to determine the significance of the differences. Differences between the control and CCl₄-treated group were compared for significance using student's t-test for non-paired samples (Woolson, 1987). All the values shown are the mean ± S.E.

Histopathology—The livers of treated animals were immediately removed and a small piece was fixed in 10% formalin for histopathological assessment. All specimens were placed in cassettes and loaded into tissue baskets. The specimens were subjected to dehydration, clearing and infiltration by immersion in different conc of ethanol (70 -100%), xylene (3 times, 1 hr each) and finally paraffin wax (4 times, 1 hr each). The tissues were then transferred into moulds filled with paraffin wax. After orienting the tissues by hot forceps the moulds were chilled on cold plates and excess wax were trimmed off using a knife. The rotary microtome (Leitz 1512) was used for making thin sections (3 µm). The sections were placed onto clean slides that were drained vertically for several minutes before placing them onto a warming table at 37 - 40 °C (Edna, et al., 1994). The slides were then deparaffinized, hydrated and stained in Mayer’s hematoxylin solution for 15 minutes. The slides were then washed in lukewarm running tap water for 15 minutes, placed in distilled water, 80% ethyl alcohol for 1 to 2 minutes then counterstained in eosin-phloxine solution for 2 minutes. The slides were then dehydrated and cleared through 2 changes each of 95% ethyl alcohol, absolute ethyl alcohol, and xylene, 2 minutes each and finally mounting with resinous medium.

Results and Discussion

Hepatic toxicity is reflected by increase in the biochemical parameter levels such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and total bilirubin. Treatment of rats with carbon tetrachloride resulted in severe damage of hepatocytes, biliary obstruction and transport inability across the liver as indicated by high levels of SGOT, SGPT, ALP and bilirubin (Table 1) (Malloy and Erelyn, 1937; Edwards and Bouchier, 1991; Reitman and Frankel, 1957; Kind