Isolation of the Exopolysaccharide Producing Microorganism and their Cultural Characteristics

Bong-Soo Son*, Seok-Kyu Park¹, Shin-Kwon Kang, Sang-Won Lee, Chi-Nam Seong² and Nack-Kie Sung

Department of Food Science and Technology, Gyeongsang National University, Jinju 660-701, Korea
¹Department of Food and Nutrition, ²Department of Biology, Sunchon National University, Sunchon 540-742, Korea

Abstract — A screening was performed to isolate exopolysaccharide-producing microorganisms, which synthesized specific exopolysaccharide for the substitutive of commercial polysaccharides, from natural sources. Soil bacterium, one of 378 mucoid isolates, was finally selected as potential producer of polysaccharides which made the culture broth very viscous and thus examined in detail for optimal medium composition. Isolated strain was identified as Xanthomonas sp. EPS-1 from the results of morphological and biochemical characteristics. The composition of optimal medium for exopolysaccharide production was as follows: 50 g sucrose, 1.5 g peptone, 2 g KH₂PO₄, 2 g MgSO₄·7H₂O, 3 g NaCl, 0.05 g CaCO₃, 0.07 g FeSO₄·7H₂O and 0.05 g MnSO₄·7H₂O in 1 liter of distilled water. From the experiments of temperature and pH dependence, the optimal conditions for exopolysaccharide biosynthesis seemed to be 30°C and 8.0, respectively. About 14.9 gram of maximum exopolysaccharide per liter was obtained at the initial pH 8.0, 30°C and 250 rpm in a flask culture. The exopolysaccharide EPS-1 had such potential as an emulsifying agent and a gelling agent in comparison with commercial exopolysaccharide.
0.1%, MgSO₄·7H₂O 0.1%, agar 1.5%, initial pH 7.0)에 상기 균주와 표본을 용액에 도달하여 30°C에서 2일 동안 배양한 후 생성된 colony로부터 검점을 갖는 균주를 1차적으로 분리하였다. 1차 분리된 균주는 분리용 배지의 조성과 같은 엽제배지에 각각 1 백금이 식 접종하여 30°C에서 3일간 250 rpm에서 진탕배양한 후 배양액을 원심분리하여 얻은 상정액에 isopropanol을 첨가한 다음 천천히 다당류를 회수하여 전 조직에서 전조된 다당류의 회수율이 높은 균주를 2차적으로 선별하였다. 2차 선별된 균주의 다당류를 용해한 후 5% α-naphthol 용액을 가하여 보라색 발색이므로 다당류 유무를 확인한 다음 다당류의 생성성이 우수하고 기본적인 물성시험을 하여 특이성이 있는 균주를 최종 선별하였다(3, 8, 9).

분리균주의 동정


다당류의 분리

분리균주로부터 생산된 다당류의 분리는 배양액을 2배의 증류수를 가하여 잘 혼합한 다음 원심분리 (11,000×g, 30분)하였다. 다시 상정액에 2배의 isopropanol을 가하여 다당류를 천천히 동일 알코올로 2번 세척하여 동결건조한 것을 crude exopolysaccharide로 사용하였다.

플러스크 배양

다당류 생산을 위한 최적 배양조건은 분리용 배지를 이용하여 30°C에서 72시간 동안 250 rpm에서 진탕배 양하는 것을 기본으로 하여 검토하였다. 각 항목의 최적조건 선정은 전조 굽쇠량(105°C, 3시간 전조)에 대한 다당류의 생산비율이 상대적으로 높은 것을 택 하였다. 배지조성 은 검정하기 위해서 각종 탄소원 및 질소원은 각각 3% 및 0.5% 씩을 첨가하였고, 그 외 염료 및 금속이온은 각 항목에 따라 농도를 달리하였다.

다당류의 점도측정

생산된 다당류 용액의 점도는 Brookfield synchlo-letic viscometer(LVT, U.S.A)의 spindle No.1을 사 용하여 측정하였으며 필요에 따라 UL-adapter를 부착하여 사용하였다.

결과 및 고찰

Fig. 1. Electron micrograph of the isolated strain, EPS-1. Bar represents 0.1 μm.

분리균주의 동정

분리균주는 Gram 음성, 간균으로 크기는 0.4×0.8~1.0 μm로 운동성을 가진 원형 호기성 세균으로 배양밀수에 따라 형태가 변형되지 않았다(Fig. 1). colony 색깔은 배지를 달리하였을 경우에도 노란색이 띄였고 외형적으로는 wrinkled colony를 형성하고 있 으며, colony가 한천배지상에서 쉽게 분리되지 않을 정도로 점착성이 강하였다. 또한 분리균주는 oxidase와 catalase를 생성하였으며 starch는 분해하는 반면 skim milk와 casein은 분해하지 못하였다. 분 리균주는 37°C까지 성장하였으나 40°C 이상에서는 성장하지 않았고 NaCl 농도가 4% 이상일 때도 성장이 되지 않았으며 Voges-Proskauer test와 indole test는 음성이었다.

또한 분리균주는 glucose와 sucrose에 대하여 발 효능도 있었고 산도 생성하였으나, 그외 대부분의 탄수화물에 대해서는 발효능은 없었으나 산은 생성 하지 못하였다. 특히 xylose, casein 및 acetic acid 등에서는 균체 생육이 전혀 이루어지지 않았다.

분리균주는 형태학적 및 배양학적 특성이 Xanthomonas 속의 특성을 보이며 흔치 않고 있으며(Table 1, 2), 특히 mucoid growth를 하고 있는 점과 전문을 가수 분해하는 점, 최대 생육온도가 37°C 전후인 점, NaCl 내성이 3%인 점 및 포도당과 자당으로부터 산을 생성하는 점 등은 Xanthomonas campesiris와 거의 일치하고 있으나 skim milk를 분해하지 못하는 점과 arabinose와 galactose로부터 산을 생성하지 못하는 점은 X. fragariae와 유사하다. 따라서 분리균주는 X. campesiris 혹은 X. fragariae의 변이주이거나