Effect of Dietary Energy and Protein Levels on Productivity and Feed Cost in Crossbred Chicks at Different Growth Stages

Yong Dae Jeong¹, Myoung Ja Youn¹, Jae Cheon Na², Heo Cheol Choi³ and Kyeong Seon Ryu¹*¹

¹Department of Animal Science, Chonbuk National University, Jeonju 561-756, Korea, ²Poultry Science Division, National Institute of Animal Science, R. D. A., Cheonan 331-801, Korea

ABSTRACT

The study was conducted to investigate the effects of dietary energy and protein levels on productivity and feed cost in crossbred chicks. Experiment was divided into starting (0~5 weeks), growing (6~10 weeks), and finishing (11~14 weeks) periods. Design of feeding trials was 3 x 3 factorial to feed different energy and protein levels for starting (ME 2,950, 3,000, and 3,050 kcal/kg; CP 18, 19, and 20%), growing (ME 3,000, 3,050, and 3,100 kcal/kg; CP 17, 18, and 19%) and finishing (ME 3,050, 3,100, and 3,150 kcal/kg; CP 16, 17, and 18%) periods, respectively. In the starting period, weight gain and FCR was improved by dietary protein level (P<0.05). Interaction effect existed in feed intake and FCR (P<0.05). Weight gain was higher in 3,000 kcal/kg ME treatment than 3,100 kcal/kg ME treatment for growing period (P<0.05). In finishing period, feed intake was significantly decreased in ME 3,150 kcal/kg treatment than the other ME treatments (P<0.05). Feed cost/weight gain (FCWG) was significantly decreased in chicks fed with 2,950 kcal/kg ME and 19% CP in starting period (P<0.05). For the growing period, FCG/WG was notably increased in ME 3,000, 3,050 kcal/kg treatment than ME 3,100 kcal/kg treatment, and the FC/WG of CP 17, 18% treatment was significantly higher than CP 16% treatment (P<0.05). Thus, the optimum levels of ME and CP to improve the productivity and feed cost for starting, growing and finishing periods were 2,950 kcal/kg ME, 19% CP 3,000 kcal/kg ME, 18% CP and 3,100 kcal/kg ME, 17 or 16% CP, respectively.

(Key words : ME, CP, Productivity, Feed cost, Crossbred chicks)

서론

국내에서 사육중인 육계는 대부분 도입된 왜계종으로 성장과 생산성이 높고, 재가고기나 소고기에 비해 저렴한 단백질 공급원으로서 중요한 역할을 해왔으며, 매년 그 소비량이 증가하는 추세이 다. 또한, 국민들의 육류 섭취에 대한 선택의 폭이 다양하게 변화되면서 계육에 대한 소비도 양적인 측면에서 건강과 맞을 중요시하는 형태로 변화되어 생산성은 낮지만 기호성 및 품질이 우수한 지연성장형 육계육계의 수요가 증가하고 있다.

* Corresponding author : Kyeong Seon Ryu, Department of Animal Science, College of Agricultural Life and Science, Chonbuk National University, Jeonju 561-756, South Korea. Tel: 063-270-2638, E-mail: seon@jbnu.ac.kr

-119-
이의
(Choi, 2009). 내학에서 계수생산 및 소비는 향후 10년간 매년 약 5%씩 증가될 것으로 전망되며(Francom, 2009). 유사육종계에 대한 수요도 전망될 것으로 예측되며 유사육종계의 성장에 적절한 영양요구량에 대한 정보가 요구된다.

따라서, 본 연구는 유사육종계 생산성의 근본을 위한 사육 단계별 사료 내 조성발 및 대사에너지의 적절수준 구명과 사료 갑리 체계 확립에 필요한 자료를 얻고자 수행하였다.

재료 및 방법

1. 시험설계 및 시험사료

공시계는 1일령 유사육종계(우리말, 축산화학원) 임수 구별 없 이 1,000구를 사용하였다. 사육 전기간(5-주간)의 설계는 사료내 에너지와 단백질량의 수준이 다른 3×3 요인설령으로 9개 처리군, 처리 구당 4반복, 반복당 30구씩 배치하였고 장소는 전북대학교 부속동 물사료성 시험설계(평사, 1.53 m²)에서 실시하였다. 시험사료 에너지 수준은 2,950, 3,000, 3,050 kcal/kg, 단백질수준은 18, 19, 20%로 하였으며(Table 1) 사료와 물은 무제한 급여하였고 경동은 24 시간으로 하였다.

사육 후기(6-10주간)에는 사육전기 사육시험에 이용된 35일령 육육종계 중 무작위로 720 구를 선발하여 배치하였다. 사육 시험장소와 조건은 전기와 동일하게 하였다. 사료내 에너지 수준은 3,000, 3,050, 3,100 kcal/kg, 단백질수준은 17, 18, 19% (Table 2)로 하였고 시험설계는 3×3 요인설령으로 9개 처리구, 처리 구당 4반복, 반복당 20구씩 배치하였다.

사육 후기(11-14주간)에는 70일령 유사육종계를 무작위로 576 구를 편집로 편집하여 배치하였으며, 사육조건 및 조건은 전기와 동일하게 하였다. 시험설계는 3×3 요인설령으로 9개 처리 구, 처리구당 4반복, 반복당 16구씩 배치하였다. 사육에 사용된 사료의 에너지 수준은 3,050, 3,100, 3,150 kcal/kg, 단백질수준은 16, 17, 18%로 하였다(Table 3).

2. 조사항목

(1) 생산성

제종은 주범별로 개체 측정하여 측정량을 구하였다. 측정 측정시 에 사료사료량을 측정하여 측 사료사료량에 사료판량을 차감하여 사

Table 1. Experimental diet formula and chemical composition of starting period (0-5 wks)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>65.04</td>
</tr>
<tr>
<td>Soybean meal</td>
<td>21.29</td>
</tr>
<tr>
<td>Corn gluten meal</td>
<td>3.39</td>
</tr>
<tr>
<td>Wheat bran</td>
<td>6.00</td>
</tr>
<tr>
<td>Soybean meal oil</td>
<td>1.00</td>
</tr>
<tr>
<td>Limestone</td>
<td>0.75</td>
</tr>
<tr>
<td>Calcium phosphate</td>
<td>1.80</td>
</tr>
<tr>
<td>Salt</td>
<td>0.40</td>
</tr>
<tr>
<td>L-Lysine</td>
<td>0.04</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.09</td>
</tr>
<tr>
<td>Vitamin premix 1</td>
<td>0.10</td>
</tr>
<tr>
<td>Mineral premix 2</td>
<td>0.10</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Chemical composition

<table>
<thead>
<tr>
<th>ME (kcal/kg)</th>
<th>2,950</th>
<th>2,950</th>
<th>2,950</th>
<th>3,000</th>
<th>3,000</th>
<th>3,000</th>
<th>3,050</th>
<th>3,050</th>
<th>3,050</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP (%)</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>Lysine (%)</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
<td>0.85</td>
<td>0.90</td>
<td>0.95</td>
</tr>
<tr>
<td>Methionine (%)</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
<td>0.40</td>
<td>0.42</td>
<td>0.44</td>
</tr>
<tr>
<td>Calcium (%)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Available phosphate (%)</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
<td>0.45</td>
</tr>
</tbody>
</table>

1) Contain per kg: vit. A, 12,000,000 IU; vit. D₃, 5,000,000 IU; vit. E, 50,000 mg; vit. K₃, 3,000 mg; vit. B₆, 2,000 mg; vit. B₉, 6,000 mg; vit. B₁₂, 4,000 mg; vit. B₃, 25 mg; biotin, 150 mg; pantothenic acid, 20,000 mg; folic acid, 2,000 mg; nicotinic acid, 7,000 mg.

2) Contain per Kg: Fe, 66,720 mg; Cu, 41,700 mg; Mn, 83,400 mg; Zn, 66,720 mg; I, 834 mg; Se, 250 mg.