Abundance of Harmful Algae, *Cochlodinium polykrikoides*, *Gyrodiunium impudicum* and *Gymnodinium catenatum* in the Coastal Area of South Sea of Korea and Their Effects of Temperature, Salinity, Irradiance and Nutrient on the Growth in Culture

Chang Kyu Lee*, Hyung Chul Kim*, Sam-Geun Lee, Chang Su Jung, Hak Gyoun Kim** and Wol Ae Lim

*Dept. of Environmental Engineering, Pukyong National University, Pusan 608-737
**Marine Environment, Oceanography and Harmful Algal Blooms Department, NFRDI, Pusan 619-902

Three harmful algal bloom species with similar morphology, *Cochlodinium polykrikoides*, *Gyrodiunium impudicum* and *Gymnodinium catenatum* have damaged to aquatic animals or human health by either making massive blooms or intoxication of shellfishes in a food chain. Eco-physiological and hydrodynamic studies on the harmful algae offer useful informations in the understanding their bloom mechanism by giving promising data for the prediction and modelling of harmful algal blooms event. Thus, we studied the abundance of these species in the coastal area of South Sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth for the isolates. The timing for initial appearance of the three species around the coastal area of Namhaedo, Narodo and Wando was between late July and late August in 1999 when water temperature ranged from 22.8°C to 26.5°C. Vegetative cells of *C. polykrikoides* and *G. impudicum* were abundant until late September when water temperature had been dropped to less than 23°C. By contrast, vegetative cell of *G. catenatum* disappeared before early September, showing shorter period of abundance than the other two species in the South Sea. Both *G. impudicum* and *G. catenatum* revealed comparatively low density with a maximal cell density of 3,460 cells/L and 440 cells/L, respectively without making any bloom, while *C. polykrikoides* made massive blooms with a maximal cell density more than 40×10⁶ cells/L. The three species showed a better growth at the relatively higher water temperature ranging from 22 to 28°C with their maximal growth rate at 25°C in culture, which almost corresponded with the water temperature during the outbreak of *C. polykrikoides* in the coastal area of South Sea. Also, they all showed a relatively higher growth at the salinity from 30 to 35%. Specially, *G. impudicum* showed the euryhalic characteristics among the species. On the other hand, growth rate of *G. catenatum* decreased sharply with the increase of water temperature at the experimental ranges more than 35%. The higher of light intensities showed the better growth rates for the three species. Moreover, *C. polykrikoides* and *G. impudicum* continued their exponential growth even at 7,500 lux, the highest level of light intensity in the experiment. Therefore, It is assumed that *C. polykrikoides* has a physiological capability to adapt and utilize higher irradiance resulting in the higher growth rate without any photo inhibition response at the sea surface where there is usually strong irradiance during its blooming season. Although *C. polykrikoides* and *G. impudicum* continued their linear growth with the increase of nitrate (NO₃⁻) and ammonium (NH₄⁺) concentrations at less than the 40 µM, they didn't show any significant differences in growth rates with the increase of nitrate and ammonium concentrations at more than 40 µM, signifying that the nitrogen critical point for the growth of the two species stands between 13.5 and 40 µM. Also, even though both of the two species continued their linear growth with the increase of phosphate (PO₄³⁻) concentrations at less than the 4.05 µM, there were no any significant differences in growth rates with the increase of phosphate concentrations at more than 4.05 µM, signifying that the phosphate critical point for the growth of the two species stands between 1.35 and 4.05 µM. On the other hand, *C. polykrikoides* has made blooms at the oligotrophic environment near Narodo and Namhaedo where the concentration of DIN and DIP are less than 1.2 and 0.3 µM, respectively. We attributed this phenomenon to its own ecological characteristics of diel vertical migration through which *C. polykrikoides* could uptake enough nutrients from the deep sea water near bottom during the night time irrespective of the lower nutrient pools in the surface water.

Key words: Abundance, Growth rate, Water temperature, Salinity, Light intensity, Inorganic nutrient, *Cochlodinium polykrikoides*, *Gyrodiunium impudicum*, *Gymnodinium catenatum*

*Corresponding author: ckleenfrdi.re.kr

이들 3종은 모두 형태적으로 유사할 뿐만 아니라 출현시기의 있게도 거의 일치하는 경향이 있다. 따라서, 이 종들간의 적조발생 기작을 이해하고, 적조발생시기 등을 예측하기 위해서는 현장에서의 출현상황과 관련한 동물 생태계 (eco-physiology)의 특성 등을 파악할 필요가 있다. 본 실험에서는 1998년도 우리나라 남해안 연안에서 이들 3종의 유영세포 출현상황을 조사하였다. 또한 동해안에 분리한 종을 대상으로 하여 연도, 염분, 조도 및 영양영류 등과 같은 환경요인에 따른 성장도를 조사함으로써 이 종들의 출현과 관련한 생리적 특성을 파악하고자 하였다.

재료 및 방법

의료

1999년도 한국 남해안 연안에서 3종의 출현량 조사는 부산~완도 연안까지 총 21개 장소를 대상으로 하여 7~10월에 실시하였다. 조사 기간은 3종 유영세포의 출현이 확인되기 전까지는 4월 2~4회 실시하였으나, 그 후부터는 월 1~2회 실시하였다 (Fig. 1).

![Fig. 1. Map showing the study area and sampling sites.](image)

시료의 채집은 오전 10시에서 오후 5시 사이에 표층수 1~2cm를 채수하였다. 채수한 시료는 고정액을 채지 않고 채집된 모양 분석하였다. 시료의 분석방법은 생식수 중 250~2,000 mL를 공극 100 μM와 15 μM의 단위를 이용하여 1~1.5 mL로 농축한 후 방사능분석을 하여 정량 및 정성분석을 실시하였다. 시료를 채집한 모든 장소에 대해서는 CTD (Seabird Electronics, SBE 25)를 이용하여 수온과 염분 등을 측정하였다.

C. polykrikoides 적조발생기간 중 쌍대 세포잎도는 본 조사 결과와 국립수산진흥원에서 발생하는 적조특수에 기재된 것 중 큰 값을 기준으로 하였다.

실험 실험

환경요인에 따른 성장특성 조사에 이용된 종은 *C. polykrikoides*,의 경우 1998년도 9월 동영연인의 적조발생시기에 capillary pipette를 이용하여 채영세포로부터 분리한 것이었고, *G. impudicum*와 *G. catenatum*는 1998년도 8월 여수연안에서 채집한 총 3종의 유휴포자를 대상시킨 것을 이용하였다. 3종의 strain을 분리 후 규산염이 제거된 1/2 배지에 4~6개월 정도 계절에 배양한 것이다.

수온에 따른 성장실험은 21°C에서 배양된 종은 10~31°C 범위 내에서 9°C 간격으로 구분하여 실시하였다. 염분에 따른 성장실험은 33%에서 배양된 종은 15~50% 범위 내에서 5% 간격으로 하여 실시하였다. 염분의 조건은 30% 이상의 증류수를 이용하여, 35% 이상은 NaCl을 이용하여 조정하였고, 염분의 측정은 salinometer (TS-digital Lab. Salinometer Model 3G)를 사용하였다. 염분실험 배지제조에 있어서는 증류수 측정에 따른 염량에 농