충남 서산에서 어획된 낙지(Octopus minor)의 중금속 함량과 인체 위해성 평가

이효진・김기범*
경상대학교 해양환경공학과 / 해양산업연구소

Concentration of Heavy Metals in Octopus minor in Seosan, Chungnam and Food Safety Assessment
Hyo Jin Lee and Gi Beum Kim*
Department of Marine Environmental Engineering / Institute of Marine Industry, Gyeongsang National University, Tongyeong 650-160, Korea

This study estimated the heavy metal concentrations in octopus (Octopus minor) and conducted a food safety assessment of octopus. Octopus, a benthic cephalopod, was collected from the Seosan intertidal zone on the west coast of Korea. The samples were digested with acids, and then the cadmium (Cd), copper (Cu), and zinc (Zn) contents were analyzed using inductively coupled plasma mass spectrometry (ICP-MS). The Cd, Cu, and Zn range of concentrations in octopus were 0.06–19 (mean 5.8), 44–1,463 (mean 354.8), and 76–929 (mean 247.9) mg/kg on a dry weight basis, respectively. The concentrations of heavy metals were higher in the internal organs than in the mantle. Of the three heavy metals, copper had the highest concentrations in the internal organs because of the existence of hemocyanin bound with copper in octopus blood, whereas zinc had the highest concentrations in the mantle. No relationship between the concentration of heavy metals and biological parameters (length, weight, and sex) was found. The ratios (I/M) of the heavy metal concentrations in internal organs and mantle were highest for cadmium, although cadmium had much lower concentrations in the internal organs compared with copper and zinc. Considering the provisional tolerable weekly intake (PTWI) of the three heavy metals and the average intake of octopus per day, all three elements should have no adverse effects on humans.

Key words: Cadmium, Copper, Zinc, Octopus (Octopus minor), Food safety assessment

서 론

중금속은 산업혁명 이후 대량 생산되어 사용되기 시작하였으며, 환경을 파괴함과 동시에 인간의 건강을 위협하여 왔다. 그 중 일부 중금속은 비료으로도 생물계에 큰 위협을 초래하여 발암성, 손상성, 태아자생 등과 같은 만성독성을 유발한다 (Michael and McIntosh, 1991; Goyer et al., 1996; Zakrzewski, 1997). 이러한 중금속 오염에 따른 생물계의 영향은 매우 크고 다양한 환경오염을 평가하는데 있어 주요 대상물질이 되었다.

중금속은 각종 산업활동 및 인간활동에 의해 강이나 하천을 통하여 해양으로 이동될 물리화학적 과정을 거쳐 퇴적물에 흡착되거나 해양생물에 축적된다. 일반적으로 중금속으로 인한 연안해양의 오염정도를 측정할 때 해수나 퇴적물, 해양생물을 이용하게 된다. 이 때 해수나 퇴적물의 연구대상으로 이용하게 되면 그 지역의 중금속 전류동도를 파악할 수 있지만, 해양생물을 이용하게 되면 전류동도를 파악할 수 있는 장점이 있다. 이러한 장점으로 해양환경의 오염정도를 평가하기 위해 연안지역에 서식하는 어류, 두족류, 이매 kommun 등 다양한 저장생물을 이용한 생물오염조사음이 널리 수행되었다 (Smith et al., 1984; Sadiq et al., 1996; Sures et al., 1997).

일반적으로 중금속은 비중이 4.0 이상의 무기물 금속을 일컫는다. 그 중에서 식품위생상 관심대상이 되는 중금속으로는 Hg, Cd, Pb, Cu, Zn, Cr, As 등을 들 수 있고, 생체 축적성이 강하고 만성독성을 일으키기 쉬운 것으로는 Hg, Cd, Pb 등을 들 수 있으며, 그리고 발암성 원소로는 As, Cr, Be, Ni 등을 들 수 있다. 이러한 중금속의 독성이 그 양이 비량질자료를 자연계에 축적되며, 식품을 통해 인체에 축적되어 건강상 위험을 일으킬 수 있는 물질이다 (Hwang et al., 2009).

1974년 FAO/WHO(Food and Agriculture Organization /World Health Organization) 협동회의에서는 오염물질 대상이 되는 화학적 오염물질 중 특히 몇몇 중금속 (Ph, Hg, As, Cd 등)을 우선순위대로 선정하였으며, WHO에서는 순수식품 중의 중금속 함량에 관한 조사를 계속 수행하고 있다. 우리나라에서도 연안지역의 화합산, 어류 및 퇴적물에서의 오염, 연안, 침투, 농업, 전기, 뉴, 침조류 등을 비롯한 다양한 중금속 함량조사와 그에 따른 생태계유전 및 오염 모니터링 연구 등이 진행되고 있다 (Lee, 1980; Chung and Yoo, 1990; Hwang et al., 2001; Jun et al., 2007; Shim et al., 2009).

*Corresponding author: kgb@gun.ac.kr
그림으로, 우리는 대화에서 제공된 산호장어의 대상
으로 한 연구에서는 중만성이 상당히 높은 농도로 검출되었으
며, 산호장어 간의 외부에 비해 100배 이상 높은 카드뮴
농도를 나타내었다 (Kim et al., 2008). 특히 카드뮴의 경우
오징어 간을 일주일에 12 g 섭취하게 되면 국내보건기구
(WHO)가 정한 일주일섭취한계 (Provisional Tolerable
Weekly Intake, PTWI)를 넘어서는 것으로 나타났다 (Kim et
al., 2008). 산호장어의 경우 간을 포함한 내장기관을 직접 섭취
하지 않으므로 섭취에 따른 인체 위험성 문제는 미비할 것으
로 판단되나, 저서성 두우류의 낙지 (Octopus minor)의 경우
내장기관까지 섭취하므로 중금속에 대한 질병능도 파악 및
낙지 섭취에 따른 인체 위험성 평가는 필수적이라고 판단된
다. 또한 Bastamante et al. (1998)의 연구결과에 따르면 갑각류,
조개류, 다마무를 섭취하는 저서성 두우류 (낙지, 문어)의 경우
어류 및 다른 부유생물 섭취하여 부유생물 두목류
(오징어)에 비해 체내에 중금속이 높게 쌓이기 때문
하였다. 그러나 국내내 해산물에 대한 중금속 섭취
위험구간은 제시되지 않았으며, 낙지의 중금속 함량 및 낙지 섭취
에 따른 인체 위험성에 대한 연구는 이루어지지 않았다.

이러한 이유로 본 연구에서는 우리나라 조개대사에서 섭취하는
저서성 두목류 낙지 (Octopus minor)를 연구대상으로 선정하
였으며, 이 중 평균 1년의 산소를 가지며 개우 체수, 조개류 등을 섭취하는 것으로 알려져 있다 (Chang and
Kim, 2003; Kim, 2004). 또한 낙지와 같은 두목류는 아가미로 흔히
하여 환경중 오염물질 농도 및 해양 오염물질 농도가 빠른
게 정량성에 도달하는 것으로 알려져 있어 해양생물자료로
활용되고 있다 (Butty and Holdway, 1997; Tanabe and
Subramanian, 2006). 본 연구에서는 충남 서산에서 검출된 낙
지에 축적되어진 카드뮴 (Cd), 구리 (Cu), 아연 (Zn)의 전문농
도를 파악하고, 식품으로서 낙지 섭취에 따른 인체 위험성
파악함으로써 국민보건 정책에 기여하고자 하였다. 또한 이
러한 연구를 통하여 낙지 섭취에 따른 위험성 평가의 기초자료
를 제공하고자 한다.

재료 및 방법
시료채집
저서성 두목류 낙지 (Octopus minor, n=20)는 2008년 11월
충남 서산에서 임업과 수심 각각 10마리씩 총 20개 시료를
채집하여 즉시 냉동 보관하였다. 냉동 낙지를 실험실로 운송
후 두정 김이와 조작 무게를 측정하여, 두정길이는 평균 10.4
cm, 낙지 전체무게는 평균 152.3 g (weight)으로 나타났다.
낙지 시료는 내장과 외부조각으로 분리한 다음 Freeze
Drier/Lyophilizer TFD series를 이용하여 -80℃에서 동결건조
하였고, 단, 내장은 각 내장기관별 분리가 어려워 외부조각
체계한 모든 부위를 합쳐 분석하였다.

분석방법
동결건조된 시료는 담자사발 (mortar)를 이용하여 분말화하
었다. 중금속분석은 Canli and Atfi (2003)의 실험방법을 일부
변경하여 수행하였다. 모든 시료의 수분 함량을 측정하였으며,
외부조각 78.83% (평균 81.8%), 내장조각 61.77% (평균 72.7%)
수분 함량을 나타내었다. 건조조각 약 0.2 g을 정량하 측정하여
중금속 분석용 고도소 인산 (Merc, Germany)과 과산화수소
(Merc, Germany)을 각각 5 mL, 1 mL씩 정보하여 웅수 (건조, 인산-1:3)와 웅수용액 (건조 건조물-1:1)에 미리 철저하게
테프론 용기 (Teflon bomb)에서 밀폐시켜서 180℃에서 2시간
추출하였다. 이 예 과정에서 풍부한 결과를 얻기 위해 추출하였고,
무용하게 되지 않은 시료는 소량의 과산화수소를 추가하
여 추출과정을 반복하였다. 추출이 끝난 시료는 철저히 과산
화수소를 증발시킨 후, 고밀도 블루에틸렌 (HDPE) 이 중 0.1
N 칼산을 이용하여 증류 부피를 20 mL로 식연한 후 유도결
합함과 저밀도비닐정 (ICP-MS, X-series, Thermo Elemental,
한국기초과학연구원)을 이용하여 정량정성 분석하였다.
설명의 정량과 정밀도를 측정하기 위해 실험마다 표준시
료 (DOLT-3, National Research Council, Canada)를 낙지와 농도
동일한 조건에서 분석하였다. 표준시료에서의 중금속 농도와
본 실험에서 검출된 표준시료 (n=4)의 농도를 Table 1에 나타
내었다. 검출되어진 표준시료의 농도는 표준시료에서의 중금
속 농도와 오차범위 내에서 일치하였으며, 카드뮴, 구리, 아연
의 평균 허수율은 각각 101%, 98%, 101%였다. 모든 중금속의
농도체계는 건조량 무게로 계산하였다.

Table 1. Cd, Cu and Zn concentration (mg/kg, dry weight) of certified reference materials (CRM, DOLT-3) determined in this study and certified values

<table>
<thead>
<tr>
<th>CRM (DOLT-3)</th>
<th>Cd</th>
<th>Cu</th>
<th>Zn</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg/kg</td>
<td>mg/kg</td>
<td>mg/kg</td>
<td></td>
</tr>
<tr>
<td>This study</td>
<td>20 ± 4.6</td>
<td>31 ± 0.7</td>
<td>88 ± 1.7</td>
</tr>
<tr>
<td>Certified value</td>
<td>19.4 ± 0.6</td>
<td>31.2 ± 1.0</td>
<td>86.3 ± 2.4</td>
</tr>
</tbody>
</table>

결과 및 고찰
낙지에서 검출된 중금속 농도
충남 서산에서 채집한 저서성 두목류 낙지에 대한 기본정보
와 낙지의 카드뮴, 구리, 아연의 농도를 Table 2에 나타내었다.
내장 (internal organ)에서의 건조량 기준으로 나타낸 카드뮴, 구리, 아연의 농도범위는 각각 3.6-19 mg/kg (평균 12±4.5
mg/kg), 86-1,500 mg/kg (평균 650±390 mg/kg), 230-930 mg/kg
(평균 400±190 mg/kg)로 나타났으며, 외부조각 (mantle)에서의
카드뮴, 구리, 아연의 농도범위는 각각 0.05-20 mg/kg (평균 0.11±0.05 mg/kg), 44-84 mg/kg (평균 64±11 mg/kg), 76-100
mg/kg (평균 93±7.2 mg/kg)로 나타났다.
낙지 내장에서는 구리가 다른 중금속에 비해 1.5-50배 이상
높은 농도를 나타내었으며, 구리 다음으로 아연, 카드뮴 순으로
높게 나타났다. 낙지를 비롯한 연쇄동물의 혈액에는 구리
를 포함하는 색소인 해모시아닌 (hemocyanin)이 있으며, 해모
시아닌은 산소와 결합하여 산소를 운반하는 역할을 한다. 마