발효 사료가치 증진을 위한 알칼리성 과산화수소의 적정 처리수준

최은희*·김영숙·홍재석
*호남작물시험장, †전북대학교 식품공학과

초록: 발효 사료가치를 증진시키기 위하여 알칼리성 과산화수소를 이용하여 벼 짚에 대한 처리수준별 화학성분의 변화와 in vitro 소화율을 조사 검토하였다. H2O2(pH 11.5)의 처리량 을 증가시킬수록 neutral detergent fiber(NDF), acid detergent fiber(ADF), hemicellulose, cellulose 및 lignin이 감소하였으며 H2O2(pH 11.5) 처리한 후 수세미는 농도가 증가할수록 NDF, hemicellulose 및 lignin은 감소한 반면 ADF, cellulose, 최은희는 증가하였다. 알칼리성 과산화수소의 농도를 4%로 조정하여 처리하였을 때 pH는 11.5~12.5에서, 온도는 55℃에서 세포벽구성물질의 분해에 효과적이었으며, 4% H2O2(pH 11.5) 처리시 벼 짚의 크기가 작을수록 잔류물물중, hemicellulose, cellulose 및 lignin이 감소하였다. 알칼리성 과산화수소의 처리에 의한 in vitro 소화율은 처리농도 및 pH가 증가할수록, 벼 짚의 크기가 작을수록 증가하였다 (1994년 8월 16일 접수, 1994년 9월 22수리).

서 론

FillColor는 우리나라 농가에서 난간 약 1,000만 M/T 이상 생산되며 그중 벼 짚은 787만 M/T이 생산되고 있는데 고초기에는 족족의 조사료 중 대부분을 차지하고 있으나 lignin 및 silica 함량이 높고 단백질 둔 영양성분의 함량이 낮기 때문에 소화율 및 기호성이 낮은 조사료 공급량의 약 27%를 차지하고 있다. 벼 짚의 사료가치를 개선시키기 위한 화학적처리로서 NaOH와 ammonia 처리가 주류를 이루고 있으나 NaOH 처리는 지나친 농의 흙URLConnection과 Na의 분비를 초래하고 ammonia 처리는 신경 화면 증상의 우려가 있다고 보고되며 alkaline hydrogen peroxide 처리는 섬유소의 in vitro 소화율 증가시키는데 효과적이며 lignin을 산화분해시켜 저장자 량의 수용성분해물을 생성함으로써 lignin을 제거하는 것으로 알려져 있다. 이러한 처리들은 반추위에의 미생물이 좀더 효율적으로 질의 섬유소에 작용할 수 있도록 하여 가축이 이용할 수 있는 에너지원으로 전환시킬수 롭에 반추가축의 질 이용 효율을 증대시켜 봐야 한다. 이와 같이 벼 짚의 영양가 및 소화율을 높여 사료가치를 증 진시킨다면 조사료자원득실과 함께 보존자원 활용효과도 얻을 수 있을 것으로 사료하여 본 연구에서는 알칼리성 과산화수소의 적정처리수준을 구명하고자 화학성분변화와 in vitro 소화율을 조사하였다.

재료 및 방법

과산화수소 및 알칼리성 과산화수소 처리

동인비종종 벼 짚을 2 mm 크기로 절단하여 H2O2의 농도를 0~8%로 하여 벼 짚(500 g)에 대하여 2배량(W/V)하고 실험에서 24시간 처리하여 80℃에서 4시간 건조하였다. 알칼리성 과산화수소 처리는 NaOH를 가하여 pH 11.5로 조정한 H2O2의 농도를 0~8%로 하고 미세세와 수세로 구분하여 처리한 후 수세처리는 처리 후 증발될 때까지 수화서수하였다. pH별 처리는 4% H2O2에 NaOH를 가하여 pH meter로 9.5~12.5로 조정하였고, pH 11.5의 4% H2O2 처리시 벼 짚의 크기는 20~0.4 mm, 처리시간은 24~120시간으로 하였다.

성분분석

회원은 화학법으로, 조지방은 ether extract법으로 조단백질은 습식분해 후 TECHNICON autoanalyzer를 사용하여 정량하였고 neutral detergent fiber(NDF), acid detergent fiber(ADF), lignin 및 cellulose는 Goering과

Key words: Rice straw, alkaline hydrogen peroxide, in vitro digestibility
*Corresponding author: Y.-H. Choi
Van Soest의 방법으로 분석하였으며 hemicellulose는 NDF와 ADF의 차이로 계산하였으며 처리 후 잔류량은 수세 후 건조중량을 초기중량에 대한 백분율로 나타내었다.

In vitro 소화율

Menke 등\(^{12}\) 및 정 등\(^{13}\)의 방법에 따라 gas test 분석법에 의해 다음과 같이 측정하였다. 100 ml 주사기형 실린더에 200 mg(DM)의 시료와 30 mL의 소의 제1위에서 채취한 액체을 혼합하여 39±0.5℃의 화학전자 함유기에 24시간 방치 후 단산가스와 메탄가스의 혼합 발생량을 측정한 다음 시료내 유기물 소화율 산출 공식에 대입하여 계산하였다.

소화율(organic matter, %)=1.33Gb−0.005Gb^2
+0.511% CP +0.076% EE +8.9
Gb: 가스 발생량(ml), CP: 조단백질 함량
EE: 조지방 함량

결과 및 고찰

성분변화

1) H\(_2\)O\(_2\) 농도의 영향

H\(_2\)O\(_2\)농도를 0~8%로 조정하여 처리하고 농도에 따른 벼 Респуб의 화학성분변화를 검토한 결과 Table 1과 같다. H\(_2\)O\(_2\)농도가 증가함에 따라 NDF, ADF, hemicellulose와 cellulose는 약간씩 감소하였고 화합은 차이가 없었으며 lignin은 6%까지 감소하다가 8%에서는 약간 증가하였는데 이것은 H\(_2\)O\(_2\)가 4% 이하의 농도에서도 lignin을 응이하게 분해함을 나타내 준다. 감소의 정도는 8% 처리가 무처리에 비하여 NDF가 90.5%, ADF 93.0%, hemicellulose가 85.0%, cellulose가 87.3%, lignin이 75.0%로 lignin의 감소가 현저하였다.

2) pH의 영향

4% H\(_2\)O\(_2\)처리시 pH를 달려하여 벼 Респуб의 화학성분 변화를 검토한 결과는 Table 2와 같다. pH가 증가함에 따라 ADF와 cellulose는 증가한 반면 NDF, hemicellulose 및 lignin은 감소하였고 그 중에서도 hemicellulose의 감소가 심했다는 이것은 H\(_2\)O\(_2\)가 산성에서는 비교적 안정하 지만 알카리성에서는 불안정하므로 pH가 증가할수록 급격히 분해하여 일시에 발생기가 대의 산소를 발생하고 반영하기 때문에 벼 Респуб은 쉽게 분해되고 pH 조절에 사용된 NaOH에 의해 알카리처리 효과도 나타났기 때문인 것으로 생각되며 Agnemo 등\(^{14}\)은 H\(_2\)O\(_2\)에 의한 lignin의 phenolic 구조의 분해는 pH 11.5에서 일시 반응 속도가 가장 빠르다고 하였으며 Gould\(^{16}\)도 1% H\(_2\)O\(_2\) 처리시 pH 11.5에서 lignin의 분해가 가장 효과적이었다.

Table 1. Influence of H\(_2\)O\(_2\)^{1}\(^{1}\) concentration on the chemical composition of rice straw

(Unit : %, dry basis)

<table>
<thead>
<tr>
<th>H(_2)O(_2) conc. (%)</th>
<th>NDF</th>
<th>ADF</th>
<th>Hemicellulose</th>
<th>Cellulose</th>
<th>Lignin</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>76.9 a(^{2})</td>
<td>51.6 a</td>
<td>25.3 a</td>
<td>35.3 a</td>
<td>7.6 a</td>
<td>14.9 a</td>
</tr>
<tr>
<td>2</td>
<td>73.0 b</td>
<td>50.4 ab</td>
<td>22.6 b</td>
<td>34.0 a</td>
<td>6.1 b</td>
<td>15.0 a</td>
</tr>
<tr>
<td>4</td>
<td>71.7 bc</td>
<td>49.2 ab</td>
<td>22.5 bc</td>
<td>31.5 b</td>
<td>5.7 c</td>
<td>15.0 a</td>
</tr>
<tr>
<td>6</td>
<td>70.6 bc</td>
<td>49.0 ab</td>
<td>21.6 cd</td>
<td>31.2 b</td>
<td>5.5 c</td>
<td>15.1 a</td>
</tr>
<tr>
<td>8</td>
<td>69.5 c</td>
<td>48.0 b</td>
<td>21.5 d</td>
<td>30.8 b</td>
<td>5.7 c</td>
<td>14.9 a</td>
</tr>
</tbody>
</table>

\(^{1}\) 24 hours treated at room temperature.

\(^{2}\) The different letters differ significantly (P=0.05) according to Duncan's multiple range test.

Table 2. Influence of pH of 4% H\(_2\)O\(_2\)^{1}\(^{1}\) on the chemical composition of rice straw

(Unit : %, dry basis)

<table>
<thead>
<tr>
<th>pH</th>
<th>NDF</th>
<th>ADF</th>
<th>Hemicellulose</th>
<th>Cellulose</th>
<th>Lignin</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5</td>
<td>78.2 a(^{2})</td>
<td>53.2 d</td>
<td>25.0 a</td>
<td>34.7 b</td>
<td>7.8 a</td>
<td>15.0 a</td>
</tr>
<tr>
<td>10.5</td>
<td>76.7 b</td>
<td>53.8 c</td>
<td>22.9 b</td>
<td>35.3 b</td>
<td>7.2 ab</td>
<td>15.0 a</td>
</tr>
<tr>
<td>11.5</td>
<td>74.4 c</td>
<td>54.3 b</td>
<td>20.1 c</td>
<td>36.2 a</td>
<td>6.5 c</td>
<td>14.9 a</td>
</tr>
<tr>
<td>12.5</td>
<td>72.2 d</td>
<td>54.7 a</td>
<td>17.5 d</td>
<td>37.0 a</td>
<td>6.6 bc</td>
<td>14.8 a</td>
</tr>
</tbody>
</table>

\(^{1}\) 24 hours treated at room temperature and washed.

\(^{2}\) The different letters differ significantly (P=0.05) according to Duncan's multiple range test.