Poster – 39

Novel Triazole Derivatives as a Potential 7-keto-8-aminopelargonate Synthase Inhibiting Herbicide

Hoh-Gyu Hahn\(^1\), Jung-Sup Choi\(^2\), Dong Hee Lee\(^3\), Kee-Dal Nam\(^1\), Hee Kyung Lim\(^2\), and In-Taek Hwang\(^2,4^*)

\(^1\)Korea Institute of Science and Technology, Seoul 136-791, Korea.
\(^2\)Korea Research Institute of Chemical Technology, P.O. Box107, Daejon 305-600, Korea.
\(^3\)Genomine Inc., Pohang 790-784, Korea.
\(^4\)Department of Green Chemistry and Environmental Biotechnology, University of Science & Technology, Daejon 305-350, Korea.

\(^*\)Corresponding author: Phone) +82-42-860-7447, Fax) +82-42-860-7034, E-mail) ithwang@pado.kRICT.re.kr

ABSTRACT

The genetic and chemical validation of potential herbicide target was investigated with 7-keto-8-aminopelargonic acid synthase (KAPAS) and 40 triazole derivatives in vitro and in vivo. KAPAS activity was completely inhibited by these synthesized triazole compounds with an IC\(_{50}\) of 48 to 592 μM in vitro. 40-day old *Arabidopsis thaliana* plants were completely killed by representative compound KHG23844 at the application rate of 250 g ha\(^{-1}\) foliar treatment in a greenhouse condition. Foliar application of 1,000 g ha\(^{-1}\) KHG23844 induced 2.3-fold higher L-alanine accumulation in the treated *A. thaliana* plants. Foliar supplement of 1 mM biotin at 1 and 2 days before KHG23844 application effectively rescued the growth inhibition of *A. thaliana* plant treated with KHG23844. With these results, representative compound KHG23844 and their derivatives might be potential KAPAS inhibiting herbicide.

Key words: 7-keto-8-aminopelargonic acid synthase (KAPAS), L-alanine, triazoles.