A Survey Analysis on the Consumer's and Farmer's Perception of Biotechnology and Genetically Modified Organisms in Korea

김배성*(Bae-Sung Kim)

ABSTRACT

This article examines and analyzes the attributes of consumers' and farmers' perceptions to the biotechnology and GMOs in Korea from the data surveyed by KRIIBB(Korea Research Institute of Bioscience and Biotechnology) in May 2002. The questionnaires for consumers were given randomly by internet to 4,256 married women considered as consumers having substantial purchasing power of GM crops or foods, and the 842 people responded. And the 824 farmers were surveyed by telephone interview, and the 439 effective questionnaires received. The consumers and farmers were asked about perception of genetic engineering or biotechnology, perception of benefits by biotechnology(now and within the next five years), concern of potential risks to the human health and environment by GMOs, intention of eating GM crops/foods, and intention of purchasing GM crops/foods or cultivating GM corps. Several attributes of public perceptions to the biotechnology and GMOs were identified by this empirical analysis and this paper suggests a few policy implications of biotechnology, biosafety and(or) GMOs.

Key Words: GMOs, Biotechnology, Biosafety, Public Perceptions, Logit Model

* 한국생명공학연구원 연구정책부(bbskim@mail.kribb.re.kr)
본 논문은 산업기자원부의 2002년도 바이오안전정보센터 구축사업의 일환으로 한국생명공학연구원이 조사한 "GMOs 인지도 설문조사" 자료에 근거해 이루어진 것으로 이에 감사드립니다.
1. 서 론

현대 생명공학(modern biotechnology)에 의해 만들어진 유전자변형생물체(Genetically Modified Organisms: GMOs)\(^1\)란 특정 생물체가 가지고 있는 유전한 성질의 유전자를 다른 생물체의 유전자에 도입해서, 유전한 성질을 갖도록 변형된 생물체를 의미한다.

유전자변형 기법이 기존 교배에 의한 품종개량 기법과 다른 점은 "중간의 벽"을 뛰어 넘어 인위적으로 목적 유전자를 다른 생물체의 유전자내로 도입할 수 있다는 점이다. 이는 기존 기법보다 특정 생물의 개량범위를 확대시킬 수 있고, 개량기간을 단축시킬 수 있는 장점 등으로 인해 여러 분야에서 용용이 기대되고 있는 반면, 그동안 인류가 경험해보지 못한 새로운 기술 및 그 산물이 장기간에 미칠 수 있는 인체와 환경에 대한 잠재적 위험성으로 인한 우려도 동시에 제기되고 있다.

유전자변형생물체를 만드는데 사용되는 유전자조합기술(recombinant DNA technology)\(^2\)은 1973년 Stanley Cohen and Herbert Boyer에 의해 소개되어, 이후 1980년대 미국을 중심으로 활발한 R&D를 거쳐, 1994년 Calgene사가 개발한 표준화한 과숙억제 토마토인 Flavr Savr™를 시작으로 다양한 생물체의 품종을 대상으로 특정한 특성을 갖도록 개발을 상품화하는데 적용되고 있다.

유전자변형생물체 연구개발의 목적을 생물체별로 살펴보면, 먼저 동물체를 대상으로는 가축개량 및 신종개량 개발(성장속도 향상, 육량 및 육질개선, 사료효율 향상 등), 내병성 강화(면역기능 강화, 바이러스 내성강화), 무산물 품질향상(피혁, 양모 품질향상), 질환로법동물 생산(악, AIDS, 기타 유전병 발병과 치료를 위한 대상동물 개발).

---

1) 유전자변형생물체라 하는 용어는 현재 WTO, OECD 등과 국내에서 널리 쓰이고 있는 Genetically Modified Organisms(GMOs). 1992년 UNEP(유엔환경계획) 리우환경회의에서 인위적 유전자 조작과 더불어 자연상태에서 변형된 생물체까지 포함하는 개념으로 처음 사용되기 시작한 Living Modified Organisms(LMOs), 그리고 Transgenic Organisms, Novel Organisms, Genetically Engineered Organisms(GEOs), Genetically Enhanced Organisms(GEOs), Biotechnology Products 등의 이름으로 불리워지고 있으며, 국내에서는 유전자조합생물체, 유전자조작생물체, 유전자변형생물체, 형질전환생물체 등으로 사용되고 있다.

2) 현재, 유전자조합기술은 세부적으로 아그로박테리움(Agrobacterium)이라는 미생물이 식물체 포에 자신의 유전자를 삽입시키는 성질을 이용한 아그로박테리움법, 식물체의 세포벽을 효소나 화학물질로 용해시켜 유전자를 쉽게 도입할 수 있도록 하는 원형질세포법, 그리고 금속의 미립자에 유전자를 결합시켜 유전자를 삽입하도록 하는 입자총법(particle-gun)법 등이 있다.