The Role of Visual Literacy in Close Reading

Pass, Charlotte · Czirr, Lisa*
(State University of New York at Cortland)


Visual literacy is essential for an in-depth comprehension of all forms of text, defined broadly as all forms of media. The ability to interpret visual text requires interpretive skills which must be taught explicitly. One method of examining visual representations involves close reading. The Common Core State Standards (CCSS) that are in place within US schools include an emphasis on close reading of all texts. In particular, the close reading of visual texts presents special challenges for teachers and students lacking interpretive skills. For English as a Foreign Language (EFL) students and English-language learners (ELLs), visual interpretive skills can help bridge and promote their English-language learning. This article will discuss the CCSS as well as specific strategies to address visual literacy in the classroom and its importance beyond. Through various examples, the authors also discuss the necessity of close reading when encountering graphics and other visual representations, some of which may be misleading or confusing. Furthermore, visual literacy is not limited to charts and graphs. Advertisements and other representations of data, both online and in other venues, similarly require close analysis for increased comprehension. Consequently, the need exists for teachers and students to read beyond the superficial overview of imagery.

I. INTRODUCTION

Visual literacy is essential knowledge for all students, and it’s critical for them to develop necessary decoding skills specific to imagery (Bowen & Roth, 2002; Leu, Kinzer, Coiro, & Cammack, 2004; McTigue & Flowers, 2011; Walpole, 1999). McTigue and Flowers (2011) assert: “Constructing meaning from science texts relies on comprehending not only the words of science but also the visuals . . . students often face comprehension

* 1st Author: Pass, Charlotte; Corresponding Author: Czirr, Lisa
challenges with graphics—particularly when reading modern, nonlinear, highly visual texts” (p. 578). In American schools, the implementation of the Common Core State Standards (CCSS) has especially spurred this necessity. These skills are important throughout students’ academic careers, especially by the time they reach grades 3-5. At that stage, students will be preparing for the specific social studies and science standards (cf: Literacy in History/Social Studies, Science, & Technical Subjects) that they will face in grades 6-12. Some key questions that must be addressed to prepare students for close reading of visual texts include:

- What are the requisite skills necessary for visual literacy?
- How will students acquire those skills?
- What is the practical application of the skills beyond the classroom setting?

The importance of graphical literacy cannot be overstated, particularly in relation to high-stakes testing. These challenges are particularly pronounced in the sciences. "If students could not accurately decode graphics, they would struggle with 40% of the test items on high-stakes science tests" (McTigue & Flowers, 2011). Acquiring an academic vocabulary and learning how to interpret graphics requires teacher intervention. Students must learn to interpret, distinguish, define, compare and contrast, and examine the following:

- Text features, such as bold words for definitions
- Charts, graphs, maps, symbols
- Digital and online media

As with written academic vocabulary, the visual “vocabulary” of data-based charts must be taught and learned. The ability to correctly interpret complex graphs and charts often depends on age and experience. To scaffold students’ comprehension of graphical literacy may require a teacher to generate a broad range of visual representations for classroom purposes (Oki, 2013). In this way, students can be guided through the interpretation of elements with increasing complexity. Elementary-aged students up until about the 5th grade especially might interpret graphs as depicting literal pictures. For example, a novice student at this level might interpret a graph using race car imagery to indicate its position on the track, rather than the actual measurement of speed (Shah & Hoeffner, 2002). <Figure 1> provides an illustration that recreates this concept. The measurements are of the top speed reached during a race in miles per hour, but a student unfamiliar with visual interpretation might consider this image to depict the physical speed and position of the cars. This issue underscores the importance of integrating visual literacy into the