Determination of the Activities of Cu, Pb and Zn in the Slag from Nonferrous Metal Smelting Process

Sang Yun Kim and Yong Hak Lee

Abstract

In order to investigate the behavior of some elements in nonferrous smelting process, their distributions between tenary alloy and silicate slag were studied in vacuum state at 1200°C, and the activities of elements in tenary systems were derived from experimental results. In Cu-Pb-Fe system, the distribution coefficients of Cu, Pb decrease with increasing their concentrations in alloy phase and their activities represent the large positive deviation from the Raoultian behavior.

In Cu-Zn-Fe system, the distribution coefficients of Cu, Zn however increase with increasing their concentrations in alloy phase and the activity of Zn represents the negative deviation from the Raoultian behavior, whereas the activity of Cu varies from the negative to the positive deviation due to the existence of Fe. In Cu-Zn-Pb system, the activity coefficient of Zn at high concentration region of Cu and that of Cu at high concentration region of Pb could be respectively represented as:

\[ \ln \gamma_{Zn} = -2.2 + 5.2N_{pb} + 250N_{pb}N_{Zn} \]
\[ \ln \gamma_{Cu} = 1.58 - 4.35N_{Zn} - 32.667N_{Zn}N_{Cu} \]

요 약

비철금속제련에서 공동적으로 합유되어 있는 원소들의 재련 중의 거동을 조사하기 위해 실험온도 1200°C, 진공상태 하에서 삼원계 금속들과 심베이트 슬래그간의 분배실험들을 실시하였으며, 실험결과로부터 삼원계에서 각 원소들의 활동도를 계산하였다.

먼저 Cu-Pb-Fe계에서 Cu와 Pb의 분배계수는 합금상 중 이들의 농도가 증가함에 따라 감소하였으며, 이들의 활동도는 Raoul트형 거동으로부터 큰 정지으라 나타났다.

Cu-Zn-Fe계에서는 Cu와 Zn의 분배계수는 합금상 중 이들의 농도가 증가함에 따라 증가하였고, Zn의 활동도는 Raoul트형 거동으로부터 정지으라 나타났으며, Cu의 활동도는 Fe의 존재로 인하여 정지으라로 바뀌었다. 한편 Cu-Zn-Pb계에서는, Cu농도가 높은 영역에서의 Zn의 활동도계수와 Pb농도가 높은 영역에서의 Cu의 활동도계수는 다음과 같았다.

\[ \ln \gamma_{Zn} = -2.2 + 5.2N_{pb} + 250N_{pb}N_{Zn} \]
\[ \ln \gamma_{Cu} = 1.58 - 4.35N_{Zn} - 32.667N_{Zn}N_{Cu} \]

*1992년 12월 31일 접수
1) 전북대학교 공과대학 금속공학과 대학원 석사과정
2) 전북대학교 공과대학 금속공학과 교수
비철금속제련에서 사용되는 광석들은 얼고자하는 목적금속 이외에도 다른 유가금속들의 화합물을 로 구성되어 있어서, 제련 중에 이들이 모두 조금 속에 포함되지 않고 slag에 침체하게 된다. 그림 호 그 함량이 많은 경우는 제처리 되기도 하지만 제련기нут으로 바라지는 slag 중에는 여러종류의 금속이 함유되어 있기 때문에 정연성질을 어렵게 할 뿐만 아니라 중금속이 포함된 산업폐기물로써도 심각한 환경문제로 대두되고 있다. 현재까지 개개의 물성에 대하여 그 가용을 연구한 것[1,2,3]은 많 이 있으나 물성을미 취한 함유배율의 가용은 아직 발표된 바가 없다.

그러므로 일반적인 비철제련 광석 중에 공통적으로 함유되어 있는 몇 가지 원소들의 제산중의 가용을 조사하고, 이들의 산염계에서의 활동도 계수를 수식화 한다면 비철금속 제산중의 물성의 제계에 큰 도움이 될 것이다.

따라서 본 연구에서는 silicate slag와 Cu, Pb, Zn 그리고 slag의 주요원인 Fe를 포함한 여러 가지 산염계 금속의 분배평형실험을 통하여 각 원소의 분배가동을 알아보고, 활동도 및 무하씨와에서의 활동도계수를 조사하므로써 제산중 이들 원소의 가용을 규명할 뿐만 아니라 유가금속이 slag로 바라지는 손실량을 최소화함으로써, slag의 처리에 필요한 기초자료를 구하는 데 주안점을 두었다.

이론적 배경

slag와 금속간의 분배평형에서 어떤 X라는 금속이 slag 중에 산화물 형태로 존재하는 경우의 반응식은
\[ X + \frac{v}{2} O_2 = XO_v \quad (1) \]
가 되고, 이 반응의 평형상수 K, 그리고 X 원소의 분배계수를 \( L^{x/M}_s \) = % X in slag / % X in Metal로 정의하여 분배계수에 관한 일반식은 다음과 같이 유도된다.
\[ L^{x/M}_s = \frac{[X]}{[X]} = \frac{K \cdot P_{ox}^{\alpha_x} \cdot [Yx](n_x)}{[Yx](n_x)} \quad (2) \]
위 식중 [ ]는 금속분율, ( )는 slag 상을 의미하며, \( P_{ox} \)는 산소분압, \( Y \)는 활동도계수, \( n_x \)는 각 상의 100g 중의 총 물질을 나타낸다.

1200°C에서 Cu, Pb, Zn간 slag 중에 산화물 형태로 존재하는 경우의 반응식과 표준생성자화에너지(\( \Delta G^* \)) 그리고 평형상수 K의 값을 Table 1에 나타낸다.

<table>
<thead>
<tr>
<th>Element</th>
<th>Reaction</th>
<th>( \Delta G^* / J = H^* - T \Delta S^* )</th>
<th>K (1200°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>Cu_{11} + 1/4O_{2(g)} = CuO_{9/2}</td>
<td>-8150 + 34.4T</td>
<td>12.05</td>
</tr>
<tr>
<td>Pb</td>
<td>Pb_{11} + 1/2O_{2(g)} = PbO_{10}</td>
<td>-195100 + 77.70T</td>
<td>724.19</td>
</tr>
<tr>
<td>Zn</td>
<td>Zn_{11} + 1/2O_{2(g)} = ZnO_{10}</td>
<td>-353130 + 106.98T</td>
<td>8596837</td>
</tr>
</tbody>
</table>

산화물의 자유에너지와 온도와의 관계를 표시한 온도편도표[5]을 보면 Cu, Zn, Pb, Fe의 각 산화물 등 중에서, 1200°C에서 Fe가 FeO로 산화되는 반응이 가장 낮은 산소분압을 나타내므로 이때의 산소분압을 Cu + Pb + Fe와 Cu + Zn + Fe 3원계의 평형산소분야로 할 경우, 평형을 이론계에서 금속상 중의 Fe와 slag 상 중의 FeO 그리고 FeO_{1,3}가 평형을 이루기 때문에, silicate slag 중의 \( \log \left( \frac{N_{Fe^3+}}{N_{Fe^{2+}}} \right) \) 대 \( \log P_{ox} \)의 그래프[6], 또는 Jimbo 등이 보고한 다음의 관계식으로부터 1200°C에서의 평형산소분야를 구할 수 있다.

\[ \log(N_{Fe^3+}/N_{Fe^{2+}}) = 0.25 \log P_{ox} + 1.26 \text(at 1200°C) \quad (3) \]

그리고 각종 slag 종 산화물의 활동도계수(\( Y_{x,ox} \))는 지금까지 많은 연구자료[7]가 발표되어 있으므로 그 값을 이용할 수 있다. 따라서 실험으로부터 추정된 \( L^{M/S}_x \) 및 \( (n_x) \)값과 위의 값을 이용하여 (2)식으로부터 \( [Yx] \)를 구할 수 있으므로, 함금상중의 X 원소의 활동도를 구할 수 있게 된다.

실험방법

실험장치 및 시료
먼저 예비실험으로 실시한 Cu - Pb - Fe와