중등수학에서 차원의 의미

유 익 송 (전주고등학교)

학생들에게 수학은 가르치기 보다 보면 차원에 관한 이야기를 하게 되거나 학생들에게 차원에 관한 질문을 받는 경우가 종종 있다. 현 교육과정에서는 차원 개념에 대해 다루지 않지만 문제 해결을 위해서나 특정한 수학적 지식을 바탕으로 하는 관점에서 차원 개념은 매우 유의미하다.

예를 들어 네비경의 개념은 2차원적인 요소이고 길이는 1차원적인 요소이므로 영상 네비는 길이에 대한 2차식으로 표현될 수밖에 없다는 수학적 지식은 네비에 관한 문제를 풀거나 삼각형 또는 다각형의 새로운 네비 공식을 유도하였을 때 유도된 식의 타당성 검토는 측면에서 유의미하다.

예를 들어 삼각형의 \(\sin \theta, \cos \theta, \tan \theta \) 등은 모두 길이/길이로 정의되므로 이들의 차원은 \(0 \)이라 할 수 있고 따라서 삼각형의 네비 \(S = \frac{1}{2} ab \sin \theta \)는 길이에 대한 2차식으로 표현된 것이다. 이 네비 식 뿐만 아니라 모든 평면도형의 네비 공식은 길이 요소의 2차식으로 표현할 수 있다.

현관 통일한 차원, 즉 길이 요소에 대한 통일한 차수를 갖는 것을 사이에 이런 관계가 존재하는가를 생각하는 것은 유추를 이용한 발견적 사고의 측면에서 의미가 있다.

즉, 두 벡터 \(\overrightarrow{A} \)와 \(\overrightarrow{B} \)의 내적은 \(\overrightarrow{A} \cdot \overrightarrow{B} = |A||B| \cos \theta \)고 이것은 분명히 길이 요소의 제곱식이다. 따라서 내적을 이용하여 삼각형의 네비를 표현할 수 있을까?라는 생각은 타당한 유추이다.

그런데 \(\overrightarrow{v} = \overrightarrow{AB}, \overrightarrow{w} = \overrightarrow{AC} \)라 하면 \(\angle A = \theta \)는 두 벡터 \(\overrightarrow{v} \)와 \(\overrightarrow{w} \)가 이루는 각이다. 한편, 이 삼각형의 네비는

\[
S = \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sin \theta
= \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sqrt{1 - \cos^2 \theta}
= \frac{1}{2} |\overrightarrow{AB}| |\overrightarrow{AC}| \sqrt{\overrightarrow{AB} \cdot \overrightarrow{AC} \cos \theta}
= \frac{1}{2} \sqrt{(|\overrightarrow{AB}|^2 - |\overrightarrow{AC}|^2 | \cos \theta}
\]

이므로 두 벡터 \(\overrightarrow{AB} \)와 \(\overrightarrow{AC} \)의 내적으로 표현 가능함을 발견할 수 있다.

한편 삼각형 \(ABC \)의 내각의 반지를 \(r \)의 변 BC, CA, AB를 빌변으로 하는 세 높이를 각각 \(h_a, h_b, h_c \)라 할 때,

\[
\frac{1}{r} = \frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c}
\]

이 성립한다. 이것을 증명하기에 어떻게 해야 할지를 생각해 보자. \(r, h_a, h_b, h_c \)를 모두 포함하는 데는 네 식들이 있다. 따라서 주어진 기하 정리를 증명하는 데 삼각형의 네비를 생각해야 한다는 것은 자연스러운 생각이다(사실 이런 분석적 사고의 훈련이 걸려 반복된 문제들이 증명의 교육을 받는 대부분의 우리나라 고등학생들에게는 이러한 문제조차 상당히 어렵게 생각됨은 문제가 아닐 수 없다.)
대수적인 관점에서 보더라도 주어진 식의 양변에 \(h, h, h \)를 곱해주면

\[
\begin{align*}
\frac{h_n h_r}{r} &= h_n h_r + h_n h_r + h_n h_r
\end{align*}
\]

이를 양변 모두 급 요소의 저장식 즉, 2차식이므로 주어진 식의 증명은 넘어 개념을 이용해 할 수 있다. 이제 \(r, h, h, h \)를 포함하는 넘어 식은 각각

\[
S = rs, s = a + b + c, a, b, c는 상자정의 세 변의 길이
\]

\[
S = \frac{1}{2} ab, a = \frac{1}{2} bh, b = \frac{1}{2} ch
\]

이므로,

\[
\frac{1}{2} a = \frac{1}{2} bh, \frac{1}{2} b = \frac{1}{2} ch, \frac{1}{2} c = \frac{1}{2} bh
\]

이므로 \(S = \frac{1}{2}(a + b + c) \)이고

\[
S = \frac{1}{2} S + \frac{1}{2} S + \frac{1}{2} S
\]

가 성립하고 넘어변을 \(S \)로 나누면 원하는 등식을 얻는다.

이와 같이 차원의 관점에서 문제가 분석하고 문제 해결에 접근하는 사고의 유형을 차원추적법 (Dimension tracing method)이라 한다. 차원추적법은 이차 등식의 증명에서 넘어나 부피를 추적함으로써 주어진 등식을 쉽게 증명할 수 있는 경우가 많다.

기하학적 개념인 차원에 대응하는 대수적 개념인 좌표나의 기하 문제해결에서의 차원추적법은 대수 문제해결에서의 차수추적법 (Degree tracing method)에 대응한다. 재귀나 2차원 개념인 넘어의 경우 길이의 계급 즉, 2차식으로 표현되고 3차원 개념인 부피는 길이의 세계급 즉, 3차식으로 표현된다.

예를 들어

\[
(x+y+z)^2 - (x+y)^2 - (y+z)^2 - (z+x)^2 + x^2 + y^2 + z^2
\]

을 인수분해 해야 하는 경우 이차 추적기 법은 유용하게 활용될 수 있다.

위의 식에서 \(x = 0 \)을 대입하면 주어진 식이 0이 되므로 인수정리에 의하여 주어진 식은 \(x \)로 나누어 필히 바꾸지 이하로 \(y, z \)로도 나누어필이됨을 쉽게 알 수 있다. 따라서

\[
(x+y+z)^2 - (x+y)^2 - (y+z)^2 - (z+x)^2 + x^2 + y^2 + z^2 = xyz \cdot f(x, y, z)
\]

가 성립한다. 그런데 좌변은 4차식이고 우변의 \(xyz \)는 1차식이므로 \(f(x, y, z) \)는 1차식이고 좌변을 구성하는 변수 \(x, y, z \)를 정당히 바꾸어도 식이 변하지 않으므로 우변도 그래야 한다.

이에 따르면 과학적 \(f(x, y, z) = k(x+y+z) \) 뿐만이만

이러한 차수의 추적은 다행이에 관한 문제의 해결에 있어서 \(f(x) \)의 차수를 \(n \)이라 하고 주어진 조건에 대입하여 \(n \)을 구하여 만약 \(n = 2 \)라면 \(f(x) = ax^2 + bx + c \) 라고 고 문제해결에 접근하다거나 하는 경우도 차수추적법에 해당한다.

한편 차원이라는 관점에서 과학적 성장을 분석하고 적절한 의사결정을 하는 것은 학생들에게 혼리 를 유도할 수 있을 뿐 아니라 과학적 관점에서 과학의 접근이라는 경험의 제공 측면에서도 매우 의미가 있다. 특히 과학의 수학적 모델링은 최소한의 미방정식 정의는 풀어야 하는데 반해 차원 분석에 의한 과학의 탐구는 기본적인 단순연산이지만 충분하다는 점도 의미가 있다.

한 번의 길이가 \(a \)인 정육면체의 부피와 길이는 각각 \(a^3 \)임은 잘 알려진 사실이다. 즉 번의 길이를 두 배로 하면 부피는 8배, 길이는 4배가 된다. 이것 은 임의도형에서 일반적으로 설명하는 사실이다.

1) 이러한 식을 대칭식이라 한다.