MODULAR TRIBONACCI NUMBERS BY MATRIX METHOD

EunMi Choi

Abstract. In this work we study the tribonacci numbers. We find a tribonacci triangle which is an analog of Pascal triangle. We also investigate an efficient method to compute any n-th tribonacci numbers by matrix method, and find periods of the sequence by taking modular tribonacci number.

1. Introduction

The study of Fibonacci sequence F_n ($n \geq 0$) has a long history since Lucas, 1885. The research has been extended to algebraic aspects, such as Fibonacci group([9], [4]) and Fibonacci ring[2], etc. It is also generalized to higher-order sequences including tribonacci[5], quatranacci, k-step Fibonacci sequences[1]. The 3-step Fibonacci sequence usually called the tribonacci sequence T_n is the sum of the preceding three terms having initial values 0, 0, 1. Hence $T_n = T_{n-1} + T_{n-2} + T_{n-3}$ with $T_{-1} = T_0 = 0$ and $T_1 = 1$, so the first some numbers are $\{T_n\} : 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, \cdots$.

The purpose of this work is to study the tribonacci numbers. We construct a tribonacci triangle which is an analog of Pascal triangle so that every tribonacci number appears in the triangle. We find an efficient method to compute any n-th tribonacci numbers by matrix method, and investigate periods of the sequence by taking modular tribonacci number.

2. Tribonacci Numbers with Binomial Coefficients

For the Fibonacci sequence F_n, it is known that if $M = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ then $M^n = \begin{bmatrix} F_2 & F_1 \\ F_1 & F_0 \end{bmatrix}^n = \begin{bmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{bmatrix}$ thus $F_n^2 - F_{n-1}F_{n+1} = (-1)^{n-1}$. Fibonacci sequence

Received by the editors May 06, 2013. Revised August 08, 2013. Accepted August 13, 2013.
2010 Mathematics Subject Classification. 11B37, 11B39.
Key words and phrases. Fibonacci, tribonacci sequence, period of tribonacci sequence.

is to \(M \) what tribonacci sequence is to \(N = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \), in fact

\[
\begin{bmatrix} T_{n+1} \\ T_n \\ T_{n-1} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} T_n \\ T_{n-1} \\ T_{n-2} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} T_2 \\ T_1 \\ T_0 \end{bmatrix}.
\]

Theorem 2.1. Let \(N \) be the matrix as above.

1. \(N = \begin{bmatrix} T_2 & 1 & T_1 \\ T_1 & 0 & T_0 \\ T_0 & 1 & T_{-1} \end{bmatrix} \) and \(N^n = \begin{bmatrix} T_{n+1} & T_n + T_{n-1} & T_n \\ T_n & T_{n-1} + T_{n-2} & T_{n-1} \\ T_{n-1} & T_{n-2} + T_n & T_{n-2} \end{bmatrix} \).

2. \(1 = T_0^2 + T_1^2 - T_1 T_{-1} - T_2 T_0 \)

3. \(T_{n-1}^3 - 1 = 2T_{n-2}T_{n-1}T_n + T_{n-3}T_{n-1}T_n + T_{n-2}^2T_n + T_{n-3}T_n^2 - T_{n-2}T_n + T_{n-1}T_{n+1} \)

\[= T_{n-2}(2T_{n-1}T_n - T_{n+1}) + T_n(2T_n^2 - T_{n-1}T_{n+1}).\]

Proof. Since \(N^2 = \begin{bmatrix} T_3 & T_2 + T_1 & T_2 \\ T_2 & T_1 + T_0 & T_1 \\ T_1 & T_0 + T_{-1} & T_0 \end{bmatrix} \), (1) follows by induction. Moreover since

\[
1 = \det(N) = T_0^2 + T_1^2 - T_1 T_{-1} - T_2 T_0
\]

\[
= \det(N^n) = \begin{vmatrix} T_{n+1} & T_n + T_{n-1} & T_n \\ T_n & T_{n-1} + T_{n-2} & T_{n-1} \\ T_{n-1} & T_{n-2} + T_{n-3} & T_{n-2} \end{vmatrix} = \begin{vmatrix} T_{n+1} & T_n & T_{n-1} \\ T_n & T_{n-1} & T_{n-2} \\ T_{n-1} & T_{n-2} & T_{n-3} \end{vmatrix},
\]

we have

\[
T_{n+1}T_{n-2} - T_{n+1}T_{n-1}T_{n-3} + T_n^2T_{n-3} - 2T_nT_{n-2}T_{n-1} + T_{n-1}^3 = 1,
\]

hence \(T_{n-1}^3 - 1 = T_{n-3}(T_n^2 - T_{n-1}T_{n+1}) + T_n(2T_{n-1}T_n - T_{n+1}). \)

Theorem 2.2. \(T_{-n} = \begin{bmatrix} T_{n-1} \\ T_{n-2} \\ T_{n-1} \end{bmatrix} \) so \(T_{-n} \equiv T_{n-1}^2 \equiv (T_{n-2} + T_{n-3})^2 \) (mod \(T_n \)).

Proof. Since \(N^{-n} = (N^n)^{-1} \), it follows that

\[
\begin{bmatrix} T_{n+1} & T_n + T_{n-1} & T_n \\ T_n & T_{n-1} + T_{n-2} & T_{n-1} \\ T_{n-1} & T_{n-2} + T_{n-3} & T_{n-2} \end{bmatrix}^{-1} = \begin{bmatrix} T_{n-2} & T_{n-1} \\ T_{n-3} & T_{n-2} \\ T_{n-1} & T_n + T_{n-2} \end{bmatrix}^{-1} \begin{bmatrix} T_{n-2} & T_{n-1} \\ T_{n-3} & T_{n-2} \\ T_{n-1} & T_n + T_{n-2} \end{bmatrix}^{-1}.
\]