Preparation and Characteristics of Curd Yogurt from Milk Added with Purple Sweet Potato

Joo-Chan Lee, Ka-Soon Lee, Jong-Kuk Lee, Kju-Heung Han and Man-Jin Oh*
Chungnam Agricultural Research and Extension Services
* Department of Food Science and Technology, Chungnam National University

Abstract

A curd yogurt was prepared by fermenting milk added with skim milk powder and purple sweet potato by culture of 5 types of lactic acid bacteria (Lactobacillus bulgaricus, Lactobacillus delbrueckii sub. sp. lactis, Streptococcus lactis, Bifidobacterium bifidum and Leuconostoc lactis). The curd yogurt were evaluated by acid production, pH, titratable acidity, number of viable cell, stability of purple sweet potato’s pigment and keeping quality. Among the organisms tested, the acid production and number of viable cell by the culture of L. bulgaricus remarkably increased for the first 12 hours which showed 1.04×10^8 CFU/mL in number of viable cell and 4.22 in pH where as fermentation by the culture of B. bifidum was slow. After 36 hours of incubation which showed 3.3×10^5 CFU/mL in number of viable cell and 5.1 in pH. In stabilities of purple sweet potato anthocyanin pigment on fermentation, yogurt by B. bifidum was found to be most stable followed by Leuc. lactis, L. delbrueckii sub. sp. lactis, L. bulgaricus, but yogurt by S. lactis was not stable. When curd yogurt added with purple sweet potato was kept at 2~3°C for 14 day, its keeping quality(pH, titratable acidity, number of viable cell) was relative good except product by L. bulgaricus was found to be decreased most of viable cell. After 2 weeks of keeping, pigment of yogurt was decreased by B. bifidum, stable by L. delbrueckii sub. sp. lactis.

Key words: purple sweet potato, curd yogurt, lactic acid bacteria, pigment stability

서 론

섬유질, 단백질 및 무기질 등이 풍부한 고구마는 고에너지 식품이나 고구마 특유의 맛새 및 저장성 등의 문제로 가공 식품개발에 그 용도가 극히 제한되어지고 있다. 특히 자색고구마는 황갈색, 운데고구마와 같은 일반 황색고구마에 비하여 유리당 함량이 1/3정도를 함유하고 있고 천연색소인 anthocyanin색소를 다양 함유하고 있어 일반 가정에서 햅고구마로 이용시 그 당도가 떨어지고 색소의 용출이 많아 소비자들의 기호도가 낮은 품종이다(1). 그러나 자색고구마는 식이섬유, 각종 비타민이 일반고구마보다 많 이 함유되어 있고 anthocyanin색소를 다량 함유하고 있기 때문에 자색고구마를 가공식품에 잘 이용한다면 천연색소도 이용하고 좋은 건강 식품으로로 효용 가치를 높일 수 있다고 본다(2,3).

한편 국민건강 증진을 위한 농산 발효식품으로서 역상 및 호상요코르트의 저속적인 개발 식품이 생 산, 시판되어지고 있어 고형분 함량을 높인 호상요
자색고구마를 첨가한 호상요우르트의 제조와 특성

쿠르트의 제조에 대한 연구가 활발히 이루어지고 있다(4-9). 자색고구마 내에 함유되어 있는 anthocyanin 색소는 색소의 특성상 pH가 산성측일 때 색소의 안정도가 좋은 성질을 가지고 있다고(2, 3) 또 전분, 각종 무기질 및 비타민 함량이 높아서 첫산균의 생육에 좋은 소재가 될 것으로 생각된다. 또한 호상요우르트 제조시 첨도를 증가시키고 유청의 분리가 되지 않기 위하여 연구로 첨도 안정제 첨가를 하게 되는데 이를 대체하기 위한 각종 전분의 첨가로 조치도의 향상에 대한 개발 연구도 이루어진 바 전분 첨가에 의한 절도 증진을 기대할 수 있었다고 보고하기도 하였으나(5). 따라서 본 연구에서는 자색고구마를 첨가하여 첫산균을 접종 배양하여 호상요우르트를 제조한 후 자색고구마의 첨가가 첫산균의 산생성, pH, 생균수, 색소의 안정성 및 제조 후 호상요우르트의 안정성에 미치는 영향을 조사하였다.

재료 및 방법

재료
자색고구마는 호남농업시험장 목포시험장에서 98년 제매 육종인 품종인 자색고구마 목포 29호를 분양받아 본 실험에 사용하였다.

균주
본 실험에 사용한 균주는 Lactobacillus bulgaricus(KCTC 3188), Streptococcus lactis(KCTC 3191), Bifidobacterium bifidum(KCTC 3202), Leuconostoc lactis(KCTC 3528), Lactobacillus delbrueckii sub. sp. lactis(KCTC 3636)의 5종의 균주를 생명공학연구소에서 분양받아 사용하였으며 첫산균의 보존용 배지로는 MRS한전배지(Dico Lab., USA)를 사용하였다.

요요우르트의 제조
발효기질로서 첨가되는 자색고구마는 100℃에서 30분간 증준한 후 박리하여 pure type으로 사용하였으며 발효기질의 고형분합량을 증가시키기 위해서 우유에 탈지분유와 자색고구마를 표 1과 같은 비율로 혼합하여 osterizer blender로 갈염화 시킨 후 autoclave에서 95℃에서 15분간 살균하였다. 살균기질은 40℃로 방한한 후 MRS 액체배지에서 24시간 배양한 첫산균 배양액을 3%(w/v)의 비율로 접종하여 37℃ 항온기에서 경시적으로 발효시켰다.

Table 1. Ingredients1) of mixture for fermentation with yogurt bacteria. (unit : g)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Total solid</th>
<th>Milk</th>
<th>SMP2)</th>
<th>PSP3)</th>
<th>Total solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>100</td>
<td>10</td>
<td>-</td>
<td>19.7%</td>
<td></td>
</tr>
<tr>
<td>PSP yogurt</td>
<td>100</td>
<td>10</td>
<td>50</td>
<td>22.6%</td>
<td></td>
</tr>
</tbody>
</table>

1) Each mixture also contained 5% sugar and 3% starter culture preparation.
2) skim milk powder.
3) purple sweet potato puree.

pH 및 적정산도
첫산균의 산생성을 조사하기 위하여 시료 10g을 취하여 중류수 30mL을 가한 후 pH는 pH meter로 측정하였고 적정산도는 0.1 N NaOH로 pH 8.1까지 적정하여 첫산으로 환산하였다.

생균수 측정
생균수는 적정농도로 회석한 시료 1 mL을 B.C.P. plate count agar에 도말하여 37℃에서 48시간 배양한 후에 나타난 colony수를 측정하였다(11).

색도 측정
색도는 균질화한 시료 10g을 중류수 30mL에 용해, 여과한 후 분광광도계를 사용하여 550nm에서 흡광도를 측정하여 색도의 변화를 비교하였다.

요요우르트의 저장성 조사
저장성 조사는 발효가 완료된 각각의 시료를 밀폐시킨 후 2~3℃의 냉장고에 보관하면서 저장기간에 따른 생균수, 적정산도, pH 및 색도를 측정하였다.

결과 및 고찰
발효중 pH와 적정산도의 변화
자색고구마를 우유에 첨가하고 5종의 첫산균을 접종하여 37℃에서 배양하면서 pH와 적정산도의 변화를 경시적으로 측정한 결과는 Fig. 1, 2와 같다. 대조군과 자색고구마 첨가구 모두 L. bulgaricus가 이 발효시 12시간만에 pH의 저하가 가장 심하여 pH 4.20과 4.22를 각각 나타내는 등 pH의 변화가 비슷한 양상을 보여주었으나 L. delbrueckii군 배양시는 대조군에 비하여 자색고구마 첨가시 24시간 발효후 더 낮은 pH를 나타내었으며 B. bifidum군 배양시는 자색고구마 첨가구에서의 pH의 변화는 서서히 감소하여 발효