Effects of Ultrasound and Ascorbic acid Cotreatment on Browning of Fresh-cut ‘Tsugaru’ Apples

Jeong-Seok Cho1, Moon Cheol Jeong2 and Kwang-Deog Moon1, 3*
1 Department of Food Science and Technology, Kyungpook National University, Daegu 702-701, Korea
2 Korea Food Research Institute, Seongnam 463-746, Korea
3 Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 702-701, Korea

Abstract

The effects of ultrasound and ascorbic acid cotreatment on the browning inhibition and microbial growth of fresh-cut Tsugaru apples were investigated. The prepared samples were dipped in distilled water (Cont) or 1% (w/v) ascorbic acid solution (AA) and were then ultrasonicated in distilled water (US) or 1% (w/v) ascorbic acid solution (AA+US). The samples were then packed in a 0.04mm polypropylene bag (20×15 cm) and were stored at 10°C for eight days. The AA+US treated samples showed high L* and low a*, b* values as well as inactivated PPO activity. The growth of the total aerobic bacteria also inhibited the AA+US treated samples more. The physiochemical properties were not different among all the samples. It was demonstrated in this paper that the ultrasonication treatment with ascorbic acid prevented the enzymatic browning and of microbial growth in fresh-cut Tsugaru apples.

Key words : Fresh-cut, ‘Tsugaru’ apple, browning inhibition, ascorbic acid, ultrasound

서 론

‘쓰가루’ 사과는 골든 멜리시스와 다른 품종을 교배하여 육성한 품종이며(1), 과실의 저장성과 가공 적합성이 나타
서 비교적 단기간에 생과로만 소비되고 있다(2). 최소가공
(minimally processed)이란 과실 및 체소류의 가공 공정을
최소화하여 신선함을 그대로 제공 할 수 있는 가공 기술로
(3), 이러한 기술을 이용한 신선 편미(fresh-cut)제품은 신선
함과 편리함에 있어 소비자의 음식을 충족시키는 새로운
형태의 시장을 형성하였으며(4), 최근에는 건강에 대한 관
심의 증가와 더불어 그 소비가 늘어나고 있는 추세이다(5).

사과의 최소 가공 시 노출되는 결단면은 제품 열화의 주원 요인으로 알려진 효소의 결단면 반응이 빠르게 진행되
는다(6), 이를 해결하기 위한 방법으로는 alginate 코팅과 같은

물리적인 방법(7,8), sodium chloride를 이용한 화학적인 방
법(9), 그리고 ultrasound, ascorbic acid의 물리화학적인 변
응 처리(10)에 의한 결단면 반응을 극소화 시키며 많이 보고되고
있다. 하지만 '쓰가루' 사과에 대한 연구에는 생산과 유통
신선도 유지를 위한 MA포장 방법(11), 수확 전 낙엽 방지에
대한 연구(12) 등이 수행되었지만 신선 편미 제품의 폐질
유지를 위한 기술에 대한 연구는 아직 부족한 실정이다.

따라서 본 연구에서는 최소 가공 '쓰가루' 사과의 폐질
유지를 위한 방법으로서 초음파와 ascorbic acid의 단단
처리 효과를 확인하고, 방응 처리에 의한 시너지 효과를
점토하고자 하였다.

재료 및 방법

실험 재료

실험에 사용한 사과는 ‘쓰가루(Tsugaru)’ 품종으로 2011
년에 경북의 한 농기에서 생산된 것을 구입하여 4°C에서 저장 후 다음 날 시료로 이용하였다.

점단 및 갈반지하여 처리와 포장

모양을 길이한 사과를 선별 후 8조각으로 사과 슬라이스를 이용하여 절단하였다. 절단된 사과를 1분간 중류수 5 L에 젖은 것을 대조군(이하 Cont), 1% ascorbic acid(w/v) 용액 5 L에 1분간 침지(이하 AA), 중류수 5 L을 제온 초음파 발생기(40 kHz, Daikan Scientific Co, Ltd, Korea)에 1분간 초음파 처리(이하 US)하였고, 방청처리(이하 AA-US)는 초음파 발생기에 1% ascorbic acid(w/v)용액 5 L을 첨가하고 US와 같은 방법으로 실시하였다. 갈반지하여 처리를 한 절단 사과의 중앙 타원로 물기를 제거하고 0.04 mm 두께의 polypropylene bag (20×15 cm)에 넣고 일정온도 포장 후 10°C 에서 8일 동안 저장하면서 품질 변화를 측정하였다.

색도 측정

사과 절단면의 색도는 백색판(L* = 97.79, a* = -0.38, b* = 2.05)을 이용하여 보정한 칼로리미터 (CR-400, Minolta, Japan) 로 L*(lightness), a*(redness), b*(yellowness) 값의 변화를 각각 측정하였다.

PPO 활성 측정

Polyphenol oxidase 활성은 Arias 등 (13)의 방법을 응용하여 측정하였다. 절단 사과에 polyvinylpolypyrrolidone (PVPP, 50 g/L)을 첨가한 50 mM의 potassium phosphate buffer (pH 5)를 가하여 균질화한 후 원심분리(18,000 g, 4°C, 30분)에서 얻은 상온액을 조절소액으로 사용하였다. 50 mM potassium phosphate buffer 1.5 mM에 조호소액 0.3 mL를 가하고, 100 mM catechol 용액 0.2 mL를 넣고 혼합한 즉시 spectrophotometer (Optizen 2120UV, Mecasys, Korea) 로 420 nm에서 5분간 흡광도의 변화를 측정하였다. PPO 활성은 1분당 흡광도가 0.001 척하는 것을 1 unit (U)로 하였다.

怂균수 수 측정

怂균수의 측정은 사과 절단면을 암반 자른 1 g에 0.1% peptone(Difco, Detroit, USA) 6 mL을 가하여 1분간 마이크로턴 후 단계별로 희석한 액 1 mL를 건조필름(PAC, 3M Center, St Paul, MN, USA)의 내부에 접종 후 35°C에서 48시간 동안 배양하였다. 배양 후 생성된 colony를 계수한怂균수를 log cfu/g으로 나타내었다. 실험에 사용된 모든 기구는 121°C에서 1시간 동안 건조한절을 한 것을 사용하였다.

포장 내부의 가스 분석

포장 내부 산소와 이산화탄소의 농도는 DualTrak oxygen/carbon dioxide analyzer (Model 902D, Quantek Instruments, Northboro, MA, USA)를 이용하여 측정하였다.

증 기능성 고정한 함량, 적정산도 및 pH 측정

가용성 고정한 함량은 절단 사과를 직접하고 여과한 액을 균질도계(Master-α, Atago Co, Tokyo, Japan)를 이용하여 측정하였다. 적정산도는 절단 사과의 중류수와 함께 균질화 한 후 100 mL로 정량하여 여과한 액을 0.1 NaOH로 pH 8.3이 될 때까지 적정하였다. 소비된 0.1 NaOH의 양을 사과산(malic acid)으로 환산하여 나타내었다. pH는 시료와 종류수를 동일 비율로 혼합 후 마사지하여 그 액을 oxidimeter (Delta 320, Mettler-Toledo, Inc, Shanghai, China)로 측정하였다.

통계처리

실험 결과는 세도만 30 반복하였고, 그 외 모든 실험 결과는 3 반복하였다. 결과 값을 SPSS software(19.0, SPSS Inc., Chicago, IL, USA)를 이용하여 분산분석과 Duncan’s multiple range test(p=0.05)를 실시하였다.

결과 및 고찰

색도 변화

저장 기간 중 총 포장과 ascorbic acid를 처리함에 따른 색도의 변화를 Table 1에 나타내었다. 저장 기간이 길어짐에 따라 모든 처리구에서 L*값이 감소하는 경향을 보인다.

| table 1. Changes in color of apple slices in relation to ascorbic acid and ultrasound treatments during storage at 10°C |
|---|---|---|---|---|
| storage period (day) | Cont | AA | US | AA-US |
| 0 | 81.37±0.92* | 80.42±1.53* | 81.03±0.97* | 81.44±1.31* |
| 2 | 78.19±2.03* | 79.97±1.48* | 79.34±0.81* | 80.26±1.30* |
| 5 | 78.23±1.18* | 79.42±1.88* | 78.05±1.27* | 80.02±1.55* |
| 8 | 75.89±1.37* | 77.22±1.79* | 76.20±2.39* | 78.22±1.36* |
| L* | 0 | -4.26±0.21* | -5.06±0.60* | -4.60±0.59* | -4.84±0.88* |
| 2 | -2.35±0.53* | -3.72±0.39* | -3.28±0.39* | -4.05±0.53* |
| 5 | -2.07±0.80* | -2.82±1.06* | -2.34±0.46* | -2.84±0.56* |
| 8 | -0.88±0.85* | -1.57±0.86* | -1.00±0.56* | -2.10±0.76* |
| a* | 0 | 13.53±1.12* | 13.44±1.00* | 13.06±0.94* | 13.38±1.07* |
| 2 | 2.07±1.07* | 17.57±1.14* | 17.50±1.96* | 15.79±1.42* |
| 5 | 2.06±2.64* | 17.99±1.20* | 20.31±1.67* | 16.66±1.57* |
| 8 | 1.91±1.48* | 19.28±1.23* | 19.87±1.53* | 18.46±1.34* |

*Cont, control; AA, dipped 1% ascorbic acid; US, treated ultrasound at 40kHz in distilled water; AA-US, treated ultrasound at 40kHz in 1% ascorbic acid.

*Means±SD(n=30) with different letters are significantly different at 5% level.