트레이닝 형태에 따른 심혈관 기능 및 심장 구조의 변화

안정현1) · 고성경2)
1) 공군사관학교 체육처
2) 연세대학교 스포츠과학연구소

Abstract

Ann, J. H., Ko, S. K. The Change of the Cardiac Structure and the Function on the Static and Dynamic Training. Exercise Science, 11(1): 189-198, 2002. To investigate the change of cardiac function and structure on the static, the dynamic and the combined training, 57 students were selected and recorded by supersonic cardiac recorder. Subjects were divided 4 groups : Control(n=7), Endurance training(n=9), Muscle Power training(n=14), Combined training(n=27). Results of this study are following,

1. At resting state, HR(56.8±3.6beat/min), CO(5.57±0.19 l/min) and SBP(111.9±4.4mmHg) of combined group were significantly lower than control group(65.3±4.6beat/min, 6.19±0.43 l/min, 118.7±5.9mmHg).
2. The mass of left ventricle of the muscle power group(91.0 ±13.7mg/m²) and the combined group(91.6±16.1mg/m²) was significantly weightier than control group(69.9±17.4mg/m²).
3. The systolic left ventricle septum of the endurance group(11.89±2.16mm) and the muscle power(11.45±2.18mm) group was significantly thicker than control group(10.90±1.30mm).
4. The Systolic left ventricle posterior wall of the muscle power group(12.88±1.31mm) was significantly thicker than control group(11.18±1.49mm).

Key words : training, cardiac output, left ventricular mass, wall thickness

초 록

안정현, 고성경. 트레이닝 형태에 따른 심혈관 기능 및 심장 구조의 변화. 운동과학 제11권 제1호, 189-198, 2002. 지구력훈련과 근력훈련 그리고 복합훈련이 심혈관 기능과 심장 구조에 미치는 영향을 규명하기 위하여 초음파 심장 기록을 측정하였다. 연구 대상은 지구력훈련군(n=9), 근력훈련군(n=14), 복합훈련군(n=27) 및 대조군(n=7)으로서 총 57명이었다.

연구 결과, 안정시 심박수와 심방출량 및 수축기혈압은 복합훈련군이 56.8회와 5.57 l/min, 111.9mmHg에서 타 집단에 비해 낮았으며 특히 대조군의 65.3회와 6.19 l/min 그리고 118.7mmHg에 비해 유의하게(p<0.05) 낮았다. 그러나 지구력훈련군과 근력훈련군의 같은 대조군과 타집단에 비해 통계적으로 유의한 차이가 없었다. 좌심실 질량은 근력훈련군과 복합훈련군이 91.0mg/m²와 91.6mg/m²로서 대조군의 69.9mg/m²에 비해 유의하게(p<0.05) 높았다. 수축기 좌심실 중격의 두께는 지구력훈련군과 근력훈련군이 11.89mm와 11.45mm로서 대조군의 10.90mm에 비해 유의한(p<0.05) 차이가 있었다. 수축기 좌심실 후벽의 두께는 근력훈련군이 12.88mm로서 대조군의 11.18mm에 비해 유의한(p<0.05) 차이가 있었다.

결론적으로 지구력훈련은 심실용적의 변화를 증가시키는 반면 근력훈련은 좌심실의 질량과 후벽 및 중격의 두께를 증가시키는 것으로 나타났다. 그러나 복합훈련군은 안정시 심박수와 심방출량을 낮추며 좌심실의 질량을 증가시키는 것으로 보인다

주요어 : 트레이닝, 심박출량, 좌심실 질량, 좌심실 두께
1. 서론

장기간 트레이닝을 수행한 선수들의 심장기능은 일반인과 달리 안정적 심박수가 40-60회로써 서백이며 1회 박출량은 크고 호흡치 심박수가 심하게 변하거나 혈압과 혈액은 정상이며 심근의 발달이 현저한데 이를 병리적인 증상과 구별하여 ‘스포츠 심장’이라고 한다.

스포츠 심장은 트레이닝 방법에 따라 그 형태가 다르다고 하는데 Buttrick와 Scheuer(1990)은 지구력 훈련을 주로 하는 경우 확장기 말의 심장 용적은 증가하고 수축기 말 용적은 감소하거나 변화가 없으므로 1회 박출량이 증가한다고 하고 있으며 심장 무게도 20-30% 증가하는 것으로 보고하였다. 이에 비해 Pelliccia 등(1993)은 근력 증강을 위해 파워 트레이닝을 하는 경력 3년의 선수 100명을 대상으로 조사하였을 때 좌심실 후벽과 심실 중격이 일반인에 비해 두꺼워졌으며 좌심실 절차 현저히 증가하는 것으로 보고하였다.


한편, 동적운동과 정적운동에 의한 트레이닝 효과에 비해 두 가지 형태를 복합적으로 시행하는 경우 심장의 구조와 기능의 변화가 현저하다는 연구가 있는데, Fagard(1997)은 사이클 선수와 같이 복합훈련을 하는 경우 심장 근육은 19-39% 더 비후해지며 좌심실 용적 또한 단순 지구력 훈련에 비해 현저하게 커진다고 하였다. Urhausen 등(1997)도 복합훈련을 주로 실천하는 남자 75명 및 여자 77명의 조정선수를 대상으로 조사하였는데 좌심실 절차는 남자는 170mg/m² 여자는 133mg/m²로서 극단적으로 증가되어 있다는 것을 발견하였다. 이와 같은 현상은 좌심실 벽과 내경에서도 조사되었는데 특히 그는 순수하게 지구력 운동을 수행하는 선수 28명과 비교했을 때에도 조정선수들의 좌심실 내경은 현저하게 큰 것이라고 하였다.

이러한 연구들은 운동과학 분야에서 정적운동과 동적운동의 효과들을 중점적으로 연구하였던 것과는 다소 다른 결과들이었다. 사실 대부분의 스포츠가 독립된 하나의 운동으로 구별되지 않는다는 점에서 볼 때 최근 연구가 증가하고 있