A Study to Develop a Practical Probabilistic Slope Stability Analysis Method

Kim, Hyung-Bae
Lee, Seung-Ho

Abstract

A probabilistic approach to identify the effects of uncertainties of soil strength parameters on searching a critical slip surface with the lowest reliability is introduced. In general construction field, it is impossible for the engineer to always gather a variety of statistical information of soil strength parameters for which lots of laboratory and in-situ soil testing are required and to use it with enough statistical knowledge. Thus, in order that the engineer may easily understand the probabilistic concept for the slope stability analysis, this study proposes a combined procedure to incorporate the engineering probabilistic tools into the existing deterministic slope stability analysis methods. Using UTEXAS 3, a slope stability analysis computer program developed by U.S. Army Corps of Engineers (U.S. COE), this study provides the results of this probabilistic slope stability analysis in terms of probability of failure or reliability index. This probabilistic method for slope stability analysis appears to yield more comprehensive results of slope reliability than does existing deterministic methods with safety factors alone.

요 지

본 연구에서는 사면안정해석 수행과정에서 업력되는 지반강도정수의 불확실성이 최소 신뢰성을 갖는 임계 활동면의 추적에 미치는 영향을 정량화하기 위한 확률론적 사면안정해석법을 소개하였다. 일반적인 공사 현장에서 실무자가 상당한 양의 실내 및 현장 시험을 통해 얻어질 수 있는 지반강도정수의 다양한 통계적 확률적 정보를 항상 확보하여 그것들을 상대한 수준의 통계적 지식에 가지고 자유스럽게 이용하는 것은 현실적으로 불가능하다. 따라서 본 연구에서 실무자가 쉽게 확률적인 개념을 이해하면서 사면안정해석을 수행할 수 있도록 기존의 결정론적 사면안정해석 기법에 공학적 확률해석 기법을 결합시키는 방안을 제시하였다. 이 공병단에서 개발한 UTEXAS 3라는 범용 사면안정 해석 프로그램을 이용하여 본 연구는 파괴확률 또는 신뢰수준의 관점에서 제안한 확률론적 사면안정해석기법의 결과들을 도출하였다. 본 확률론적 사면안정해석기법은 사면안정의 안전율을 고려하는 기존의 결정론적 사면해석 기법들 보다 더욱 종합적으로 사면안정의 신뢰성에 대한 결과를 제시하는 것으로 나타났다.

Keywords : Factor of safety, Probabilistic theory, Reliability index, Slope stability analysis

*1 정희원, 한국도로공사 도로연구소 도로연구원 (Member, Chief Researcher, Korea Highway Corporation, kimhyun3@freeway.co.kr)
*2 정희원, 상지대학교 도로공학과 교수 (Member, Prof., Sangji Univ.)
1. 서론

1.1 배경

사면안정해석에서 해당 사면의 지반 강도 정수들이 얼마나 정밀하게 정량화 되는가 하는 문제는 그 해석이 얼마나 정확히 수행되어질 수 있는가 하는 문제와 직접 된다. 실제로 적절한 지반강도정수가 제시되는 경우 대부분의 결정론적 해석 방법들은 사면 안정 해석에 상상적으로 적용되어 왔다. 지반 강도정수들의 적절한 대표 값을 결정하기 위해서, 공학기술자들은 이들에게 들어 있는 불확실성을 반드시 고려하여야 한다. 즉, 해당 사면의 파괴원인에 대한 분석과 이용되는 사면안정 해석 기법이 아무리 완벽하였음에도, 지반 강도 정수에 대한 설계입력치가 적절하지 못하다면 해석결과의 신뢰성은 그다지 높지 못할 것이다. 결정론적 사면안정해석 기법은 안전율을 계산하는 과정에서 설계입력 값의 기대값만을 고려하였으며, 결정론적 기법만을 이용하는 사면안정 해석에서 공간적 변이 및 측정 오차 등에 따라 기인하는 지반 강도정수들의 불확실성을 확률·통계적으로 정량화하여 이를 해석결과에서 고려하는 방안을 도출하는 것은 매우 어려운 일이다. 또한 여기서 계산되는 안전율은 사면이 파괴될 확률이나 일반사면 활동에 대한 안전율의 신뢰성을 향상한 의미에서 정량적으로 보여주는 것이 아니다. 사면안정에 대한 확률론적 해석을 위해서는 설계 입력치에 지반강도정수가 지반투수조건, 지반구조물의 재원과 관련된 대표값은 물론이건지와 이들의 확률적 변화량도 포함되어야 한다. 확률론적 사면안정 해석에서 해석결과는 사면의 신뢰성 지수나 파괴확률로 표현이 되는데 이 값들은 사면의 안정도에 대한 설명하는 물론 설계입력치의 확률적 가변성에 따른 사면안정 해석결과의 신뢰성에 대한 정보도 함께 제공한다.

1.2 연구의 범위

본 연구의 목적은 결정론적 사면안정 해석과정에서 나온 결과들에 대하여 공학적 확률처리기를 적용하여 기존의 결정론적 사면안정 해석 기법을 그대로 사용하면서도 확률론적 사면안정 해석이 가능하다는 것을 보여주고자 하는 것이다. 그림 1과 같은 단면을 갖는 계방에서 사면안정 해석을 실시하고 그 결과를 이용하여 확률론적 사면안정 해석 기법의 타당성을 고찰하였다. 계방의 각 부분에서 내부마찰각과 절차력은 대칭적 확률분포를 갖는 임의의 확률변수로 가정되었으며 그에 대한 구체적 값들은 표 1에 요약되어 있다. 설계입력변수들의 공간적 변위에 따른 확률적 면차들을 정량화할 때, 변수들간의 상관관계는 반드시 고려되어야 하며 이에 따라 설계 면차도 조정되어야 한다. 일반적으로, 지반강도정수의 측정을 보다 정밀한 간격에서 수행하였다면 공간적 변위에 따른 강도정수의 분산은 보다 감소하며 내부 마찰각과 절차력 사이의 상관

![Diagram](image)

그림 1. 사례분석을 위한 고려된 계방의 단면