J. of Korean Ind. & Eng. Chemistry,
Vol.6, No.4, August 1995, 682-689

Adiponitrile의 전해합성에 관한 연구

이 종일・태 범석・박영우

한국과학기술연구원 화학공학연구부
(1995년 2월 24일 접수, 1995년 4월 10일 채택)

A Study on Electrosynthesis of Adiponitrile

Jong-Il Lee, Beom-Seok Tae, and Young-Woo Park

Div. of Chem. Eng., Korea Institute of Science and Technology, Seoul 130-650, Korea
(Received February 24, 1995, Accepted April 10, 1995)

요 약 : Nylon 66의 precursor인 Adiponitrile(ADN)의 전해합성에 대한 전극제로, 유화액 제조를 위한 계면활성제
그리고 반응물인 AN의 전기화학적 특성들을 조사하였다. 양극제로는 내식성과 낮은 산소발생 과전압을 갖는 Dimensional Stable Anode(DSA)가 쓰였다. 분극특성으로부터 Electrohydrodimerization(EHD) 반응은 초기에는 -1.2 ~ -1.3V(vs.
Hg/HgCl2)에서 시작되나 시간이 경과함에 따라 양극과 음극 모두 전위의 변화가 일어나는 것으로 보아 실제로는 약
-7.8V(vs. Hg/HgCl2)에서 ADN의 합성반응이 진행되는 것으로 생각된다. 계면활성제로 quaternary ammonium salts
(QAS)는 대부분 적합하다.

Abstract: Electrosynthesis of adiponitrile (ADN), a precursor for Nylon 66, was investigated by characterization of
the effect of electrode materials, additives, and reactant AN. DSA was used as a anode material, which is well known
to the corrosion resistant and has low oxygen overvoltage. Polarization characteristics show that the initial step of EHD
reaction occurs at about -1.2 ~ -1.3V (vs Hg/HgCl2), but the final ADN synthesis reaction appears to occur at about
-7.8V (vs Hg/HgCl2) looking at the electrode potential change along time. The quaternary ammonium salts were accept-
able for the electrosynthesis of ADN.

1. 서 론

Adiponitrile(ADN)은 Engineering plastic의 대명
사인 Nylon 66의 단형체인 Hexamethylene diamine
(HMDA)의 출발물질로 이용되고 있다. ADN은
1957년 소련의 I. L. Knunyants가 alkalimetal amalgam과 acrylicnitrile(AN)을 반응시켜 만든 후 여러
방법으로 합성연구가 계속되었으며 다음의 3가지로
요약할 수 있다.[1]

Adipic acid를 암모니아로 처리하여 암모늄염을 만
들고 축매를 이용하여 dehydrative amination으로
ADN을 제조하는 방법, Butadiene의 cyanation을
 통하여 ADN을 생성하는 방법 그리고 AN을 출발물질로 Electrohydrodimerization(EHD)하여 ADN을
만드는 방법으로 1959년 Baizer가 Olefin을 이용하
여 전해방법으로[2] 이합체를 만드는데 성공한 후
1965년 Monsanto사에서 AN을 원료로 ADN을 생산
하는 공정을 상업화하는데 성공하였으며 식 (1)과
같은 반응이 일어나 이상적으로는 AN과 물 그리고
전기적인 에너지만 소모된다.
| Table 1. ADN Selectivity of Various Cathode Materials[4~6] |
|-----------------|-----------------|
| Material | ADN selectivity(%) |
| Hg | 90 |
| Pb | 90 |
| Hg/Pb | 90 |
| Pb(6% Sb) | 88 |
| Cd | 85 |
| Zn | 84 |
| Ni | 92 |
| Carbon steel | 77 |
| Ti | 75 |
| Graphite | 75 |

\[2\text{CH}_3\text{CHCN}(\text{AN}) + 2\text{H}^+ + 2e^- \rightarrow \text{NC}(\text{CH}_3)_2\text{CN}(\text{ADN}) \]

at cathode \hspace{1cm} (1)

\[\text{H}_2\text{O} + 2e^- + \text{H}^+ + \frac{1}{2}\text{O}_2 \]
at anode

그러나 Beizer[3]에 의하면 전해액 내의 AN의 농도가 낮을 경우에는 부반응으로

\[\text{CH}_3\text{CHCN} + 2\text{H}^+ + 2e^- \rightarrow \text{CH}_3\text{CH}_{2}\text{CN} \]

이 일어날 수 있으나 수용액의 AN의 농도가 20wt% 이상 유지되면 식 (2)의 부반응은 제거될 수 있고 또한 낮은 수소발생 전극압을 갖는 음전극을 사용할 경우에는 음극면에서 물의 분해에 의해 수소가 발생하고 OH-이온이 생성되어 전해액의 pH가 증가하게 되면 식 (3), (4)의 부반응도 일어날 수 있다[3].

\[\text{H}_2\text{O} + \text{CH}_3\text{CHCN} \rightarrow \text{CH}_3\text{OHCH}_2\text{CN} \]

(hydroxy propionitrile) \hspace{1cm} (3)

\[\text{H}_2\text{O} + 2\text{CH}_3\text{CH}_{2}\text{CN} \rightarrow (\text{NCC}_3\text{H}_7)_2\text{O} \]

(bis-cyanoethylether) \hspace{1cm} (4)

식 (3), (4)의 부반응은 H⁺ 이온을 첨가하여 pH 조절로 제거할 수 있으나 산으로 조절되면 AN의 전해반응보다 중합체를 형성하는 반응이 더욱 잘 진행된다[3]. 따라서 음극제료는 높은 수소발생 전극압을 가져야 하고 또한 높은 반응율을 갖기 위해 ADN의 생성을 위한 전해액이 높은 재료일 것이 요구된다. 이러한 특성을 갖는 전극재료들은 Table 1에 보였으며 이중 Hg는 전해조 제작상 문제가 있으므로 Pb가 음전극으로 가장 적합하다.

| Table 2. Service Life Time of Membranes in Aqueous AN Solution[6] |
|-----------------|-----------------|
| Supplier/designation | Service life(hr) |
| AMF | C-60 | 76 |
| | C-110 | 5 |
| | C-313 | 2 |
| Asahi Glass | CSG-10 | <24 |
| | CMG-10 | <24 |
| | CMV-10 | <24 |
| Asahi Chemical | DK-1 | <24 |
| Tokuyama Soda | CHR-4 | 190 |
| | CL-2.5T | 133 |
| Ionac Chemical | MC3142 | 2 |
| Permutit(U. K.)| C-20 | 15 |
| Radiation | 320 | 2 |
| Applications | 1010 (paired) | 115 |
| Ionics | AZG | 255 |

특히 EHD 공정은 격막법과 무격막법의 2가지로 나눌 수 있으며 현재 격막법의 의한 방법은 Table 2에서 볼 수 있듯이 격막의 수명이 비교적 짧고 현재조 구조가 복잡하여 제작비가 많이 들고 격막의 저장에 의해 전해조의 전압차가 커서 전력비가 증가하며 격막의 교체시 조립중앙 등의 문제점으로 무격막법으로 대체되고 있는 실정이나 이들의 연구결과에 대한 발표가 거의 없다.

본 연구에서는 무격막법으로 EHD를 이용하여 AN으로부터 ADN을 얻는데 AN을 수용액 내에 유화시키기 위한 계면활성제와 aprotic 용매 그리고 이들의 전기화학적 특성을 조사하였다.

2. 실험장치 및 실험방법

2.1 실험장치

본 실험에 사용한 실험장치는 Fig. 1과 같으며 전해조는 AN과 농이 유화된 전해액과 일련의 전극구로 구성된다. 전해조는 250ml의 beaker로 외벽에 jacket을 부착하여 일정한 온도를 유지할 수 있도록 내벽을 순환하였으며 전해조 내의 전해액을 지속적으로 유화시키고 또한 수용액 내의 AN의 농도를 균일하게 유지되도록 자석교반기로 교반할 수 있도록 하고 AN의 보충과 전극구를 저지할 수 있도록 실리콘 고무마개를 가공하여 용기의 덮개로 하였다. 전극