When memory became portable in the course of evolution, the information content of memory became replicable as memes. Propagation of memes started with imitation, but with the advent of human language, memes thrived and caused enhanced brain capacity for meme processing through cognition. Culture comprises of endemic memes that enter young brains and may be protective or pathogenic. Childhood nurturance and stress enter the brain as memes and cause epigenetic changes in genes for future resilience or vulnerability. Personal development is the process of interaction among the epigenetically determined brain, resident memes, and newly introduced memes. The selfplex, the sense of self, represents a dominant memeplex formed through development, and consists of several memeplexes usually known as roles. In certain persons, there may be conflicting selfplexes, one dominant and the other(s) repressed. Mental health is attained when there is a memetic democracy, where the selfplexes are tolerated, and may shift and adapt. Stress attenuates resident memes including selfplex and introduces stress memes that may awaken/strengthen repressed memes, resulting in a memetic anarchy and a final common pathway psychiatric syndrome. Treatment of such syndromes should be geared toward both the brain state and suppression of pathologic memes. Broad spectrum and specific meme-directed therapies should be considered.

Key words: meme, psychotherapy, cognitive mental illness
1. When Memory Became Portable, Memes Rose

Cognition, a derivative of the Latin, *cognoscere*, meaning *knowing*, was implicitly present with the earliest forms of life, when the unicellular organism showed the ability to “know” food by ingesting it, and “know” to follow chemical traces toward food. This type of “knowing” presupposes some type of pre-existing memory, be it learned or programmed in the DNA (or RNA).

In the course of evolution, specialized structures developed that connect the programmed memory to learned memory, and learned memory to each other, which we call the nervous system. The brain evolved as a specialized organ dedicated to processing memory, both learned and intrinsic (DNA), which in turn facilitated learning, survival, reproduction, and further enlargement of the brain. Learning through trial and error created memories that facilitated individual and species survival, and resulted in building bigger brains, but the memories themselves died with the organism until the brain developed imitation as a learning tool.

With imitation, which is robustly in evidence in primates and in song-birds (Goodall, 1964; Haesler, Rochefort, Georgi, et al, 2007; Heyes, 1998; Heyes & Galef, 1996; Pinaud & Terleph, 2008; Premack & Premack, 1994; Sugiyama, 1995), learned behavior (memory) could be transferred from one brain to other brains in the form of memes. The term, meme, was coined by Dawkins (Dawkins, 1976; Dawkins, 2006), who proposed the term to denote information that is replicated through imitation. Memes have been elaborated by Blackmore, Dennett, and others, and there is considerable controversy concerning exactly what memes are (Aunger, 2000; Aunger, 2002; Blackmore, 1999; Bloch, 2000; Boyd & Richerson, 2000; Crofts, 2007; Distin, 2005; Gleick, 2011; Kronfeldner, 2011; Kuper, 2000; Leigh, 2011; Leland & Odling-Smee, 2000; Sperber, 2000). There are different views on whether the meme is information, specific neural structures, objects such as paintings, etc., or maybe all or none of these. I consider the meme to be information in a broad sense (Gleick, 2011), which can be represented (contained) in neural structures, natural and man-made objects, electronic codes, etc. Inherent in the term, meme, is the implication that the information is