Risk Factors of Post Endoscopic Retrograde Cholangiopancreatography Bacteremia

Min-Sun Kwak*,†, Eun Sun Jang*, Ji Kon Ryu*, Yong-Tae Kim*, Yong Bum Yoon*, and Joo Kyung Park*†

*Department of Internal Medicine, Seoul National University Hospital, and †Department of Internal Medicine, Healthcare Research Institute, Seoul National University Hospital Healthcare System Gangnam Center, Seoul National University College of Medicine, Seoul, Korea

Background/Aims: Bacteremia following endoscopic retrograde cholangiopancreatography (ERCP) is a severe complication, but the risk factors for this condition have not yet been clearly determined. Thus, the aim of this study was to investigate the risk factors of post-ERCP bacteremia. Methods: Among patients who underwent ERCP from June 2006 to May 2009, we selected patients without any signs of infection prior to the ERCP procedures. Of these patients, we further selected those who experienced bacteremia after ERCP as well as two-fold age and sex-matched controls who did not experience bacteremia after ERCP procedures. We compared clinical, laboratory and technical aspects between these two groups. Results: There were 70 patients (3.1%) who developed bacteremia after ERCP. In the multivariate analysis, a history of previous liver transplantation, an elevated serum alkaline phosphatase level and an endoscopic retrograde biliary drainage procedure were independent risk factors of post-ERCP bacteremia (p=0.006, p=0.001, and p=0.004, respectively). The microbiologic analysis revealed the presence of gram-negative organisms in 80% of the cases, and 11 patients had infections with bacteria expressing extended spectrum β-lactamases. Pseudomonas infection was significantly more common in patients who received liver transplantation as compared to patients without transplantation (p=0.014). Conclusions: A history of liver transplantation, elevated serum alkaline phosphatase levels and endoscopic retrograde biliary drainage procedure were independent risk factors of post-ERCP bacteremia and require additional attention in future studies. (Gut Liver 2013;7:228-233)

Key Words: Bacteremia; Endoscopic retrograde cholangiopancreatography; Liver transplantation; Alkaline phosphatase; Endoscopic retrograde biliary drainage

INTRODUCTION

Therapeutic endoscopic procedures in pancreatobiliary tract have been challenged in many years, and the development towards high techniques made it possible to expand the role of endoscopic retrograde cholangiopancreatography (ERCP). However, ERCP are still invasive procedures, therefore there are always chances of post-ERCP complications including infection, bleeding, pancreatitis, and perforation.1 The cholangitis and sepsis following ERCP are severe complications and they occur in up to 0.5% to 3.0% of cases.1-5 The actual incidence of post-ERCP bacteremia remains unknown; investigators have reported the incidence of bacteremia as low as 2.2% and up to 21% in different populations.6-9

There has been much effort to find the high risk group of post-ERCP bacteremia. Several previous studies showed that patients with obstructed bile ducts are at highest risk of developing septic complications following ERCP, especially when the drainage was not complete.3,10,11 And poorly disinfected duodenoscopy was considered as a risk factor of post-ERCP bacteremia especially in Pseudomonas aeruginosa infection.12 However, since ERCP procedure is not frequently performed compared to the gastroscopy or colonoscopy, there is no sufficient data about post-ERCP bacteremia. Moreover, most of the studies were performed several decades ago, thus underlying diseases, causative microorganisms and procedure techniques have been changed. Therefore, the aim of this study is to investigate the risk factors of post-ERCP bacteremia on the basis of recent case-control study.
MATERIALS AND METHODS

1. Study patients

The patients who underwent ERCP at Seoul National University Hospital from June 1, 2006 to May 31, 2009 were firstly selected in this study. We further selected the patients who experienced bacteremia after ERCP procedures among patients who did not show bacteremia before ERCP. Inclusion criteria is as follows: 1) patients who did not have any evidence of bacteremia before ERCP including patients without any symptom or sign of bacteremia with normal laboratory findings for the diagnostic ERCP or patients who had jaundice or right upper quadrant pain suggesting diseases like stone impaction or malignant obstruction but who did not have any signs of fever >38.0°C and who did not have positive blood culture results prior to ERCP, 2) patients who were not treated with antibiotics prior to ERCP, 3) patients who showed positive blood culture results within 5 days after ERCP, and 4) patients with positive culture results of definite pathogens were included. Patients with other infection such as pneumonia and urinary tract infection were excluded. Patients with culture results of possible contamination like isolation of coagulase negative staphylococcus in only one blood culture bottle were also excluded.

Then, the 2-fold age and sex matched patients who showed no evidence of cholangitis and no evidence of bacterial growth in the culture before and after ERCP were enrolled as controls.

2. Clinical data and laboratory test

Both of the patients and controls group were analyzed in terms of clinical, laboratory, and technical aspects of ERCP procedures. In our ERCP data base, we originally made thorough description along the procedure and kept records for each patient besides formal reports (previous endoscopic sphincterotomy [EST] state, methods of EST, number of attempts during EST, methods of biliary drainage, types of accessories used during the ERCP procedure, approximation of volume amount in dye injection, existence of periampullary diverticulum, underlying disease, cause of disease upon ERCP and other clinical factors, etc.). Medical records of these patients were reviewed thoroughly based on electronic medical records system and our procedure data base as well. Institutional Review Board approval was obtained for this study.

Clinical information included indications for ERCP, primary diagnoses, and comorbid diseases such as hypertension, diabetes, ischemic heart disease, congestive heart failure, cerebrovascular accident, chronic kidney disease, liver cirrhosis, liver transplantation, and malignancies.

The following blood test results before ERCP were reviewed; white blood cell count (normal range, 4,000/mm³ to 10,000/mm³), bilirubin (normal range, 0.2 to 1.2 mg/dL), alkaline phosphatase (ALP; normal range, 0 to 40 IU/L), C-reactive protein (normal range, 0 to 0.5 mg/dL), and amylase (normal range, 60 to 180 U/L). The isolation of microorganisms from blood cultures and the susceptibilities to antibiotics were also identified.

In technical aspects, ERCP was performed by therapeutic duodenoscopy (TJF-240, JF-240, TJF-200, or JF-200; Olympus, Tokyo, Japan). Therapeutic ERCP was defined when EST, or any drainage procedure of pancreatic or bile duct had been carried out. Details of procedures were also reviewed as follows; biliary or pancreas cannulations, EST methods, endoscopic retrograde biliary drainage (ERBD), endoscopic nasobiliary drainage (ENBD) and usage of accessories in stone removal (balloon or basket). Procedure related complications such as pancreatitis, bleeding and perforation were also reviewed. Post-ERCP pancreatitis was diagnosed when serum amylase levels elevated more than three times of the normal limit with notable persistent abdominal pain for more than 24 hours after ERCP. Significant bleeding was defined as a requirement of a blood transfusion of more than two units or when patients needed an embolization or urgent operation.

3. Statistical analysis

Statistical analysis was performed with SPSS for Windows version 17.0K (SPSS Korea, Seoul, Korea). The Student t-test and Pearson’s chi-square test were used to calculate the statistical significances of different clinical, laboratory, and endoscopic variables. Multivariate analyses were performed to identify independent factors associated with post-ERCP bacteremia by using stepwise logistic regression model. The p-values <0.05 were considered statistically significant.

RESULTS

1. Baseline and follow-up clinical characteristics

Among 2,236 patients who underwent ERCP during study period, we selected 70 patients with post-ERCP bacteremia and age-sex matched 140 controls as mentioned in methods section. One hundred and thirty-two patients (62.9%) were male and median age was 61 years (range, 35 to 81 years). The baseline characteristics are outlined in Table 1. Malignancy, especially biliary tract cancer (p<0.001) and hepatocellular carcinoma (p=0.043) occupied significantly more proportions in the patients with bacteremia. Among the benign diseases, biliary stricture after liver transplantation was significantly higher in patients with post-ERCP bacteremia (p<0.001). In the laboratory findings, patients in post-ERCP bacteremia group showed significantly higher serum levels of bilirubin (p=0.033) and ALP (p<0.001).

2. Comorbidities

Table 2 shows comorbid diseases of patients with and without post-ERCP bacteremia. The incidence of hypertension, diabetes, ischemic heart disease, congestive heart failure, cerebrovascular accident, chronic kidney disease, liver cirrhosis, chronic obstruct-