Mathematical Explanation for the Wide and Deviated Range of Optimal Hematocrit

Department of Emergency Medicine, Kangwon National University Hospital, Chuncheon, Korea, Department of Internal Medicine, Kangwon National University College of Medicine, Chuncheon, Korea

Sung Bin Chon, M.D., Jun Hwi Cho, M.D., Ph.D., Seung-Joon Lee, M.D., Ph.D.¹, Won Sup Oh, M.D., Ph.D.¹

Hematocrit is an important determinant of oxygen delivery. Of particular interest, its target level is very wide for different kinds of shock: from 30% for hemorrhagic or septic shock to 56% for secondary polycythemia. This range is not only wide but also deviated to the higher level from the optimal value of 40%. In this letter, the authors determine the mathematical basis of the wide and deviated range of hematocrit starting from the Hagen-Poiseuille equation.

Key Words: Hematocrit, Hemoglobin, Oxygen, Polycythemia, Shock

Shock is defined as “failure to deliver and/or utilize adequate amounts of oxygen”¹. Oxygen delivery (DO₂) is calculated as “13.4 × Hb × SaO₂ × ΔP × (πr⁴/8 μL)”. (Hb, hemoglobin concentration; SaO₂, O₂ saturation of hemoglobin; ΔP, pressure gradient along the vessel; r, inner radius of the vessel; μ, blood viscosity; L, length of the vessel) The current treatment of shock is focused on maximizing DO₂ by boosting its components. Regarding the component of hematocrit (Hct), which is usually 3 times of Hb, the early goal-directed therapy (EGDT) for severe sepsis and septic shock and the guidelines for hemorrhagic shock recommend transfusion if Hct is less than 30%, while they recommend phlebotomy for patients suffering polycythemia secondary to hypoxic pulmonary disease when Hct is more than 56%²-⁴.

In 1967, Crowell JW reported that blood viscosity (μ) can be expressed in terms of Hct like following: μ=k × e₀.₀₂₅Ho (k: a constant)⁵. By substituting this equation, DO₂ above can be expressed as a function of Hct by ignoring other parameters which are independent of Hct: DO₂=K × Hct/e₀.₀₂₅Ho (K: another constant). With this equation, he showed that DO₂ reaches its maximum when Hct is 40⁵.

Here come the following questions: (1) Why is the practical range of optimal Hct so wide from 30% for septic or hemorrhagic shock to 56% for secondary hypoxia with hyperviscosity? (2) Why is the range more deviated toward the higher level of the Hct from the reference value of 40%?

To get the answers, we drew the DO₂-Hct relationship plot (Fig. 1). The graph is asymmetrically ∩-shaped. As proven by Crowell already, DO₂ reaches the maximum (DO₂ max) when Hct is 40. We supposed that the optimal DO₂ exceed the ‘95%’ of DO₂ max. This optimal DO₂ is achieved when Hct falls in the range of 28.5~ 54.2% (Fig. 1). To revisit the 2 questions above, (1) the theoretical range of optimal Hct (28.5~ 54.2%) almost coincides with the practical one (30~56%) assuring its wide range, and (2) the left-skewed shape of the DO₂-Hct plot explains why the range of optimal Hct is deviated toward its higher level from the reference value of 40%.

In conclusion, the wide and deviated range of optimal hematocrit for shock patients could be explained mathematically by analyzing the oxygen delivery (DO₂) as the function of the hematocrit (Hct).

REFERENCES

2001;345:1368-77.

![Graph showing relative oxygen delivery (DO₂) as a function of hematocrit (Hct).](image)

Fig. 1. Relative oxygen delivery (DO₂) as a function of hematocrit (Hct).

DO₂ can be expressed as $K \times \text{Hct}^{0.025}\text{Hct}$. When drawn, it shows an asymmetric \(\cap \) shaped curve, reaching its maximum when Hct is 40. DO₂ exceeds the ‘95%’ of the maximum value (DO₂\(_\text{max}\)) when Hct falls in the range of 28.5–54.2%.