MTT Assay를 이용한 부인과 악성종양
세포주들의 항암제 감수성검사에 관한 연구

서울대학교 의과대학 산부인과학학교실
고 민 환·신 멜 우

= Abstract =

A Study for the Chemosensitivity Testing of Gynecological
Malignant Cell Lines Using MTT Assay

Min Whan Koh, M.D., Myon Woo Shin, M.D., Ph.D.
Department of Obstetrics and Gynecology, College of Medicine, Seoul National University

A predictive test is needed so much which will assist in the selection of an effective
cytotoxic drug and therapy, and provide tools of avoiding unnecessary drug-induced toxicity
and tumor resistance. The more effective methods of chemosensitivity testing should be
developed as a useful means in cancer biology research, anticancer drug development and
screening, and improvement of chemotherapy modalities. Chemosensitivity to cisplatin,
adriamycin and epirubicin was performed using MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-di-
phenyltetrazolium bromide] assay. The cell lines tested were HeLa and CaSki (human cervi-
cal cancer), NIH:OVCAR-3 (human ovarian cancer) and JAR (human choriocarcinoma).

The amount of formazan product generated and the measured after solubilization in
DMSO at 540 nm is proportional to cell number, although absolute absorbance for a given
cell number varies between cell lines. The growth rates of cell lines in microtiter wells were
determined using the MTT assay. For each cell line optimal seeding concentrations were
derived, to give where possible maximal absorbance while ensuring that cell remained in
exponential growth.

All these cell lines were inhibited dose-dependently by cisplatin, adriamycin and epiru-
bicin.

When anticancer activity was determined by comparing assay AUC with CA-AUC,
adriamycin and epirubicin were effective on four cell lines but cisplatin was not.

Some characteristic parameters associated with adriamycin sensitivity were in vitro
doubling time, prior therapy and source of culture.

*본 연구는 서울대학교병원 1988년도 특진 연구비 보조로 이루어진 것임.
Epirubicin was the same as adriamycin in terms of antitumor effect ($r=0.95, p<0.01$).

These results demonstrating that MTT assay was the semiautomated short-term assay suggest that MTT assay be a very useful tool for obtaining the basic knowledge on chemotherapy. And the MTT assay could be very useful for screening new drugs, developing the regimens of combination chemotherapy, and therapeutic individualization when it can be verified by in vivo test.

I. 서 론

암치료법의 4대요법이라 하면 수술요법, 방사선요 법, 화학요법 및 면역요법을 의미한다. 그러나 수술요 법 및 방사선요법과 같은 국소요법은 분명한 한계점이 있으며, 전신요법인 면역요법도 현재로서는 치료방법 이 정립되어 있지 않은 상태이다. 따라서 앞으로의 암 치료물의 향상은 항암화학요법의 발전에 달려있고 이 여도 과연은 아니다.

지금까지의 항암 화학요법은 주로 경험에 의존하여 왔다. 즉 항암제를 선택할 때, 다수의 환자중에서 대상 으로 phrase I, II, III의 임상연구를 통하여 결정하는 데, 이 경우 선택된 항암제가 개개의 암에 대하여 두 효과를 나타내는 것은 아니어서 고형암의 경우 임 반적으로 복합 항암요법의 경우에도 30-40%의 유 효율을 보일 뿐이다. 결과적으로 나머지 환자에서는 무효한 항암제를 투여받아 치료실패와 함께 불필요한 부작용만 겪게 되는 것이다.

항암 화학요법의 성공은 유효한 항암제의 선택과 투 여방법에 따라 크게 좌우되며, 중앙마다 중시 속도 및 항암제에 대한 반응도 등이 달라 유효한 항암제의 선택은 쉽지 않다. 심지어는 조직학적으로 같은 종류의 종양에서도 항암제에 대한 감수성의 차이가 민간하여 경험에 의존한 항암제의 선택은 한계점에 도달한 느낌이다. 따라서 환자 개개인에 있어 항암 화학요법 시 작전에 감수성검사를 해보아 유호약제를 미리 알 수 있다면, 치료요법을 극대화시키고 부작용은 극소화시킬 수 있을 것이며 또 치료결과를 예측할 수 있다는 데 큰 의의가 있다.

실질적인 방법으로 유효한 약제를 선택하는 것에는 환자의 암조직에서 직접 암세포를 분리하여 감수성검 사를 하는 방법이 있고, 확립된 암성종양 세포주를 사용하여 각각 항암제에 대한 감수성검사를 하고, 그 결과를 이용하여 유효한 항암제를 선택하는 방법이 있 다. 전자의 방법은 항암제 선택의 개별화를 이루을 수 있는 장점은 있으나 암세포 분리에 어려운점이 있고, 시간과 경비가 많이 들고, 배양조건에 따라 결과가 달 라질 수 있어 임상에 널리 사용 되기에는 해결되어야 할 문제점이 많다. 후자의 방법은 확립된 세포주 를 사용함으로써 항암제에 대한 감수성의 폐턴은 비교 적 쉽게 알 수 있으나, 확립된 세포주의 생물학적 성 질이 반드시 그 종류의 종양의 성질을 대변하지 않는다는 결과의 정색에 문제가 있다. 그러나 검사시 정 상세포의 오염이 없으며 시험관내에서 높은 생존율을 유지할 수 있고 실험의 재현성이 높아 현재 항암제 선 발 및 유호약제선별 등 암기초 연구에 널리 쓰이고 있 다.

항암제에 대한 암세포의 감수성을 측정하는데는 in vivo검사를와 in vitro검사가 있다. In vivo검사는 nude mouse에 중앙편을 이식한 후 항암제여기에 의한 중앙 축소를 관찰하는 xenograft법과 mouse 실험마우스에 중앙편을 이식한 후 항암효과를 측정하는 subrenal capsular assay가 있다. In vivo검사는 masked compound에 대한 효과강점이 가능하고 이질적인 암 세포 질도에 대하여 감수성을 평가한다는 장점이 있으 나, xenograft법의 경우 중앙 이식 성공률이 20~ 30%로 낮고 결과 판정까지 1개월 2개월 정도 걸 리는 단점이 있다. Subrenal capsular assay의 경우 6 일이라는 비교적 짧은시간에 결과를 얻을 수 있고 성공률도 높으나, 이식편의 균일성 문제, 주관적인 중앙 크기 측정 및 mouse와 사람의 암세포가 다른 수 있는 동의 문제가 있어, 널리 사용되기 어렵다고 하였다.

In vitro검사는 암세포의 형태학적변화 관찰법, 세포색제법, 방사선 침투입과 혈산과의 결합도를 측정하는 법, 세포잡석형성 분석법, 세포증식의 유수 단위의 51Cr-labeled protein을 측정하는 방법. 그리고 암세포의 변화를 이용하여 산소의 소비나 자