All Parametric Variation Originates from CI–Related UG Residues

Norio Suzuki
(Kobe Shinwa Women’s University)

Suzuki, Norio. 2008. All Parametric Variation Originates from CI–Related UG Residues. The Linguistic Association of Korea Journal, 16(3), 81–117. The major part of the set of assumptions adopted for the purpose of discussion in this article largely consists of those concerned with the following three important issues/concepts in recent minimalist theorizing: i.e., (i) the strong minimalist thesis (SMT) in the sense of Chomsky (2000, 2001, 2004, 2005, 2007); (ii) the concept of a UG residue in the sense of Chomsky (2007) and of Suzuki (2007a, 2007b, 2007c, forthcoming); and (iii) the notion of abductive parametric change in the sense of Roberts (2007).

Note first of all that “abductive NS (narrow syntactic) variation” should be strictly within the scope allowed for by the binarity of human language parameters of variation. And by far the strongest claim I make in this paper is that all human/natural language parameters of variation originate from CI–related UG residues in the sense of Suzuki (2007b, forthcoming).

One of the two categories of a UG residue (originating from Chomsky 2007) consists of FLN entities not properly interface–realized. Specifically relevant here are those FLN resources that have an imperfect many-to-one correspondence with the CI–interface/module.

Quite generally, when it comes to binary parameters (one at a time), there should always exist an imperfect two-to-one correspondence between FLN (i.e., NS structures) and their single/common CI-interpretation both across grammars and perhaps, grammar–internally. When it comes to human/natural languages themselves, there should arise an extremely imperfect many-to-one correspondence (many = the number of all human languages) between NS structures in all languages and their single/common CI-interpretation.

Key Words: trigger, P(arameter)-expression, bootstrapping, the strong minimalist thesis(SMT), UG residue, CI–related UG residue, interface–reduction, interface–realization, variation, abductive acquisition, abductive parametric change, weak P(arameter)-ambiguity
1. Introduction: the Framework

People working on brain sciences are often reported nowadays to say that more than 90% of our brain cells will die before being used, only a few percent of them being used for life purposes. I suspect that it is necessary to go into detailed analysis of these dying cells for the truly deep understanding of the nature of human life. In the same sense, I have a hunch that it is crucially needed for us to deeply examine the true nature of what I call UG residues for the true understanding of human language (Chomsky 2007; Suzuki 2007a,b,c).

First, let me point out that there are two major (sub-)concepts related to the (general) notion of UG residues: (i) the concept of "interface-reduction" (due to Chomsky 2007; see also (10a) in section 5.1 below); and (ii) the concept of "interface-realization" (due to me; see also (10b) in section 5.1 below). I tentatively assume the notion of interface-reduction in the sense of Chomsky (2007) to be central in this whole "UG residue" story.

And a brief comment may be in order on my concept of interface-realization. The central assumption with the notion of interface-realization is that the only SMT-compatible correspondence between FLN/UG/NS and the interfaces is a one-to-one correspondence. This should correspond to the concept of "strong I(nterface)-realization" (see section 5.2.1 below). I doubt the existence of such strong I-realization, already given the diversity of natural languages, which situation readily points to the presence of CI-related UG residues. In the time (200,000 years ago in East Africa) of Eve, our Homo sapiens common ancestor/mother in the more or less familiar evolutionary story, there may have existed SMT-compatible strong I-realization, given the speculation that the number of existing natural languages in those days was just one. It is CI-related UG residues that constitute the major part of "weak I(nterface-)realization" (see section 5.2.2 below). Two representative types of weak I-realization are improper I-realization and null I-realization. The typical case of improper I-realization should be one in which we obtain an "imperfect" many-to-one correspondence