ABSTRACT

This paper proposes a three-axis cross-coupling control system designed to improve the contouring accuracy in machining of 3D nonlinear contours. The proposed cross-coupling control system is based on an innovative 3D contour error model and a PID control law. The novel contour error model provides almost exact calculation of contour errors in real-time for arbitrary contours and can be integrated with any type of existing interpolator. In the proposed method, three axes of motion are coordinated by the proposed cross-coupling controller along with a proportional controller for each axis. The proposed cross-coupling control system is evaluated through computer simulations. The simulation results show that the proposed 3-axis cross-coupling control system with the new contour error model substantially can improve the contouring accuracy by order of magnitude compared with the existing uncoupled controllers in high-speed machining of nonlinear contours.
1. 서론

생산시스템에서 고정밀도 및 생산성 향상에 대한 요구가 증대되면서 CNC 공작기계 시스템의 정교한 제어계어에 대한 연구가 지속적으로 이루어져 왔다. 그 중 교차축 연동제어(cross-coupling control)는 윤곽요가의 직접 제어기에 반영되어 윤곽요가를 줄이는 방향으로 구동축들의 운동을 조정하므로 공작기계 시스템의 윤곽정확도 향상에 효과적인 방법으로 인정된다. 교차축 연동제어에서는 특히 윤곽요가 모델의 정확성이 윤곽추적성능의 향상에 있어서 매우 중요한 요소이다.

Koren(1)에 의해 2축 연동제어가 제시된 이래 조금씩 다른 형태의 윤곽요가 모델과 제어방법을 이용한 연동제어가 연구되어 왔다.(2~4) 그러나, 기존 연동제어기의 윤곽요가 모델은 공들이 큰 비선형 윤곽에 대한 고속의 이송에서 정확도가 현저히 떨어지는 문제점이 있다. 이것을 어느 정도 개선한 모델이 Erkokmaz와 Altintas(5)에 의해 제시되었고, 최근에 더 일반적이면서 정확한 윤곽요가 모델이 Jee와 Yun(6)에 의해 개발되었다. 이들 모두는 2차원 궤적에만 국한되어 적용될 수 있는 2차원 윤곽요가 모델로서 3차원 윤곽요가공에는 쓰일 수 없다. 3차원 윤곽요가 모델은 Lo(7)에 의해 제시된 바 있으나, 기존 2차원 모델과 같이 고속의 비선형 윤곽추적시에 부정확한 단점이 있으며 윤곽요가를 구하기 위해서는 기준 윤곽에 대한 수식을 필요로 하므로 G 코드 및 기존의 다양한 보간기 모듈과의 통합이 거의 불가능하다고 볼 수 있다.

위와 같은 문제점을 해결하기 위해 본 연구에서는 새로운 3차원 윤곽요가 모델에 기반을 둔 3축 연동제어 시스템을 제시한다. 제시된 연동제어 시스템은 모든 3차원 궤적에 대해 적용 가능하고, 보간기의 종류에 무관하여 기존 제어 모듈과의 결합이 용이하며, 기준 궤적의 형상 및 이송속도에 관계없이 윤곽요가 모델의 정확도가 매우 우수한 장점을 갖는다. 제시된 새로운 3차원 윤곽요가 모델은 각 순간의 실제 공구위치로부터 가장 근접한 기준 궤적의 기준점을 구하고 이 점들을 이용해 윤곽요가 벡터를 계산한다. 윤곽요가 벡터에 연동제어를 적용하여 구해진 제어명령의 각 축방향 성분은 개별적인 3축 제어 루프의 제어명령과 결합됨으로써, 윤곽요가가 최소화되도록 구동축들의 운동을 동시에 조정하게 된다.

 컴퓨터 시뮬레이션을 통해 본 논문에서 제시된 3차원 윤곽요가 모델의 정확성을 입증하였으며, 다양한 윤곽에 대해 제시된 3축 연동제어기와 현재 CNC 공작기계에 적용되고