A Study on the Titanium Etching and Platinization by the Chemical and Electrochemical methods

Mi-Kyung Lee · Seoung-Man Park · In-Soo Park · Young-Gi Hwang

<요 약>

표면처리 산업의 습식 표면처리 기술의 45%가 전기경공에 의해 행해지고 있으며 전극은 전기경공에서 필수적인 요소 부품으로 그 내구성 및 내부식성이 극히 빠르며 피드백제의 생산 원가를 상승시키는 주요 요인으로 적용하고 있다.

본 연구에서는 티타늄에 백금을 도금하기 위하여 여러 가지 예정기술 중 화학적 및 전기화학적인 방법으로 티타늄 표면처리를 하였으며 화학적 예정기술이 티타늄 표면을 더 완연하게 예정시키면 알 수 있었다. 하지만 예정한 후 백금 도금을 실시한 결과 전기화학적인 방법으로 예정한 티타늄의 백금 도금층의 밀착성과 두께는 화학적인 방법보다 더 우수함을 알 수 있었다.

<ABSTRACT>

Electroplating occupies 45% of wet surface treatment technique in surface treatment industry. Electrode is the essential required part in electroplating.

* 본 논문은 과학기술부와 한국과학재단으로부터 지원받은 경남대학교 연구원 및 환경연구센터 (CRERC)의 지원으로 연구되었으며 이에 감사드립니다.
** 대학원 화학공학과
*** 공과대학 정밀화학공학부 교수
The durability and corrosion resistance of present electrodes are not good, which is the main reason to increase the product cost of electroplating.

In this study, chemical and electrochemical etching methods were used to treat titanium surface before platinizing on titanium. It was found that titanium surface could be etched more uniformly by chemical method. But when platinizing after the etching of titanium, the electrochemical method was found to generate better adhesion and thicker platinized layer than the chemical method.

Ⅰ. 서 론

자동차, 반도체, 전자, 우주항공, 환경설비, 철강, 기계부품 산업 등의 생산비용 중에서 표면처리를 위해 쓰이는 비용은 2~10% 정도로서 상당히 높다. 그리고 표면처리 산업의 75% 정도가 슬식 표면처리 기술에 의존하고 있으며, 이 중 45%가 전기도금에 의해 행해지고 있다. 전극은 전기도금에서 필수적인 요소 부품인데 반해 그 내구성 및 내부식성이 극히 짙어 피도금제의 생산원가를 상승시키는 주요 요인으로서 성공하고 있다. 가장 우수한 전극 재료는 백금이지만 가격이 비싸 원자재를 전극으로 사용하기에는 경제적인 부담이 크다. 이에 따라 순수한 백금재료에 산가 난 단락류, 백금 도금 테타늄, 아연도금한 테타늄 등을 대용하고자 많은 관심과 연구가 집중되고 있다. 특히 고기능성 저카기 제품을 개발하기 위해 기저 금속의 영용의 영역과 예제 기술, 도금 용액과 도금 기술, 기능성 활성배의 표면 증착 기술 등에 관한 신기술 개발에 주력하고 있다. 현재 국내에서 사용되는 백금 도금 테타늄 전극은 대부분을 일본으로부터 수입하여 조달하고 있으며, 현재 범용되고 있는 전극의 백금 도금 두께는 5 μm 이하인 경우가 많아 유효기간이 7년 이내이고, 백금 정착도가 우수하지 않아 강산이나 강알칼리에서의 작용에 부적합할 때도 많다. 산업기술정책연구소(현 한국산업기술평가원)의 발행 자료1에 의하면, 미래 산업에서는 고내식성 및 고내구성 재료의 수요가 급속도로 증가할 것으로 예측하고 있으며, 양질의 신재료를 개발하면 관련 산업체의 과급효과도 크게, 수입대체 효과 및 수출증대 효과가 매우 높은 것으로 판단하고 있다.

티타늄에 백금 도금하는 기술은 전기도금용 전극으로의 발전뿐만 아니라, 자동차 및 기계부품의 내구성을 향상시키는 기술로서, 반도체의 가능성을 부여하는 기술로서, 유독성(강산, 강알칼리) 물질을 취급하는 환경설비제료의 개발 기술로서, 철강공업의 납각수 제조용(해수의 반수화 환경공정) 전극 개발 기술로서, 또한 신장병 환자의 혈액투석용 전극으로서2) 널리 활용될 수 있다. 전기자동차용 전지 또는 산업용 연료전지의 전극으로 직접적인 사용이 가능하기 때문에 그 과급효과가 매우 크다. 산업폐수를 전처리(중금속의 전처리환원, 유기물 및 COD의 전처리환화, 오페수 및 유지의 전기용접 등)하는 기술이 범 세계적으로 확산되고 있으므로 전해용 전극의 수요가 날로 증가할 것에 대비할 수 있는 효과가 기대된다.

현재 관련 산업체에서 사용하고 있는 티타늄에 백금도금하는 기법은 방산전극의 제조 과정에서는 도금정착이 좋지 않고, 5μm 이상