Protection of burn-induced skin injuries by the flavonoid kaempferol

Byoung Kwon Park¹, Soohyoung Lee¹, Jae-Nam Seo², Jae Won Rhee³, Jae-Bong Park⁴, Yong-Sun Kim¹, Ihn-Geun Choi⁵, Young-Soon Kim⁶, Younghee Lee⁶ & Hyung-Joo Kwon¹,⁎

Departments of ¹Microbiology, ³Pathology, College of Medicine, ⁵Center for Medical Science Research, ⁷Department of Biochemistry, College of Medicine, Hallym University, Chuncheon 200-702, ²Department of Neuropsychiatry, Hallym University, Han-Gang Sacred Heart Hospital, Seoul 150-719, ⁴Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Korea

Thermal burn injury induces inflammatory cell infiltrates in the dermis and thickening of the epidermis. Following a burn injury, various mediators, including reactive oxygen species (ROS), are produced in macrophages and neutrophils, exposing all tissues to oxidative injury. The anti-oxidant activities of flavonoids have been widely exploited to scavenge ROS. In this study, we observed that several flavonoids-kaempferol, quercetin, fisetin, and chrysin-inhibit LPS-induced IL-8 promoter activation in RAW 264.7 cells. In contrast with quercetin and fisetin, pretreatment of kaempferol and chrysin did not decrease cell viability. Inflammatory cell infiltrates in the dermis and thickening of the epidermis induced by burn injuries in mice was relieved by kaempferol treatment. However, the injury was worsened by fisetin, quercetin, and chrysin. Expression of TNF-α induced by burn injuries was decreased by kaempferol. These findings suggest the potential use of kaempferol as a therapeutic in thermal burn-induced skin injuries. [BMB reports 2010; 43(1): 46-51]

INTRODUCTION

Thermal injury provokes tissue damage, immunosuppression, susceptibility to bacterial infection as a result of the activation of inflammatory responses, and induction of immune dysfunction (1-4). The exposure of skin tissue to thermal burns is known to preferentially induce augmented recruitment of neutrophils and macrophages (5-8), T lymphocyte dysfunction (9, 10), production of Th2 cytokine profiles such as IL-4 and IL-10 (11), production of chemokines such as monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-2 (MIP-2) (8, 12), and expression of inflammatory mediators (13, 14). Researchers have shown that the neutrophil chemoattractant genes KC (GROα) and MIP-2 are expressed in different cell populations at sites of surgical injury in the skin (8). Further, Shallo et al., have reported that thermal injury to mouse skin upregulates the expression of MCP-1, leading to infiltration of macrophages into the skin (12). Evidence has been presented that thermal injury leads to production of inflammatory cytokines such as TNF-α, IL-4, and IL-6, and these cytokines have been shown to play roles in the development of life-threatening post-burn complications such as multiple organ failure (1-4, 15).

Although the mechanisms involved in tissue damage and immune dysfunction have yet to be elucidated, it is likely that a wide variety of mediators, including reactive oxygen species (ROS), are produced in macrophages and neutrophils after exposure to burn injury (16-18). All tissues, including the burned skin, are subsequently exposed to oxidative injury, so researchers have accordingly applied antioxidant defense systems to enhance burn healing (19, 20).

Flavonoids have remarkable and diverse biological activities, including powerful antioxidant and anti-inflammatory effects, and inhibition of cell-signaling proteins (21-23). The antioxidant activities of flavonoids are widely exploited to scavenge ROS, and have attracted increasing attention as useful therapeutics for a variety of diseases including cancers as well as cardiovascular, autoimmune, and infectious diseases (24). We recently reported that the generation of ROS in response to TNF-α was also reduced by flavonoids via inhibition of phosphorylation and degradation of IκBα and translocation of NF-κB p65 (25). Here, we show that the flavonoid kaempferol acts as a potent therapeutic, reducing inflammation in thermal burn-induced skin injuries.

RESULTS AND DISCUSSION

Inhibitory effects of flavonoids on LPS-induced IL-8 promoter activity in RAW 264.7 cells

In a previous study, we showed that IL-8 promoter activation and gene expression are differentially regulated by each flavonoid in TNF-α-stimulated human embryonic kidney (HEK) 293 cells.
In this study, we first investigated the effects of flavonoids on LPS-induced IL-8 promoter activation in mouse cells. To evaluate whether flavonoids inhibit LPS-inducible gene expression in mouse cells, the IL-8 promoter-reporter construct was transiently transfected into a mouse macrophage cell line, RAW 264.7 cells, and pretreated with flavonoids (40 μM) at 37°C for 1 h. The cells were then cultured with LPS (200 ng/ml) for 12 h, and luciferase activity was monitored. Each flavonoid had a different effect on LPS-stimulated RAW 264.7 cells. The activation of IL-8 promoter was dramatically reduced in the presence of fisetin and chrysin, whereas kaempferol and quercetin were less effective in suppressing IL-8 promoter activation (Fig. 1A).

Differential effect of flavonoids on viability of RAW 264.7 cells
In a previous study (23), we showed that treatment of HEK 293 cells with quercetin or chrysin decreased viability in a dose-dependent manner. However, the viability of the cells was not affected in kaempferol-treated HEK 293 cells. To explore whether the treatment of RAW 264.7 cells with flavonoids induced cell death, we investigated the effects of flavonoids on the viability of RAW 264.7 cells, using an MTT assay. As shown in Fig. 1B, the viability of the cells dramatically decreased in a dose-dependent manner with treatment by quercetin and fisetin. However, kaempferol and chrysin induced death of RAW 264.7 cells only at high concentrations, such as 160 μM. Therefore, kaempferol and chrysin were selected as candidate flavonoids that specifically inhibit inflammation in mouse cells without cytotoxicity.

Protective effect of kaempferol upon thermal injury
It is well known that flavonoids have antioxidant and anti-inflammatory effects (24, 25). Therefore, we first examined whether flavonoids could protect the skin from thermal injury-induced inflammation. To examine the effects of flavonoids on thermal injuries, flavonoids were topically applied to dorsal skin for 30 days (daily) after thermal injury. Macrophagic appearances of lesions induced by thermal injury spontaneously healed after 21 days by regeneration and repair (scar formation) (Fig. 2A). During the healing process, the macroscopic appearances of wound closure showed greater progress from kaempferol treatment than from treatments of quercetin, fisetin, or chrysin (Figs. 2A, 3A); the healing kinetics was much faster in the case of kaempferol (see 10 days after thermal injury). We also observed inflammatory cell infiltrates in the dermis at 10 days post-induction of thermal injury by a microscopic evaluation of hematoxylin and eosin (H&E). At days 21 and 30 post-burn, the burned area of the skin revealed significant thickening of the epidermis (Figs. 2B, 3B). Treatment of the burned area of skin with kaempferol clearly reduced inflammatory cell infiltrates in the dermis and thickening of the epidermis were observed in the quercetin, fisetin, and chrysin-treated skin at 21 days post-burn (Fig. 2B). Therefore, it is confirmed that kaempferol has unique anti-inflammatory therapeutic effects on thermal injury-induced burned area of skin in mice.

Inhibitory effect of kaempferol on thermal injury-induced TNF-α gene expression
It is known that inflammatory cytokines such as TNF-α and IL-1β induced by thermal injury trigger marked immune dysfunction and multiple organ failure (14, 15). Therefore, we evaluated TNF-α mRNA expression in the burned area of skin to determine if it was modulated by kaempferol treatment.